I have a CSV file with the following columns of interest
fields = ['column_0', 'column_1', 'column_2', 'column_3', 'column_4', 'column_5', 'column_6', 'column_7', 'column_8', 'column_9']
for each of these columns, there are 153 lines of data, containing only two values: -1 or +1
My problem is that, for each column, I would like to save the frequencies of each -1 and +1 values in comma-separated style line by line in a CSV file. I have the following problems when I do the following:
>>>df = pd.read_csv('data.csv', skipinitialspace=True, usecols=fields)
>>>print df['column_2'].value_counts()
1 148
-1 5
>>>df['column_2'].value_counts().to_csv('result.txt', index=False )
Then, when I open results.txt, here is what I found
148
5
Which is obviously what I dont want, I want the values in the same line of the text file separated by comma (e.g., 148, 5).
The second problem I have happens when one of the frequencies are zero,
>>> print df['column_9'].value_counts()
1 153
>>> df['column_9'].value_counts().to_csv('result.txt', index=False )
Then, when I open results.txt, here is what I found
153
I also dont want that behavior, I would like to see 153, 0
So, in summary, I would like to know how to do that with Pandas
- Given one column, save its different values frequencies in the same line of a csv file and separated by commas. For example:
148,5
- If there is a value with frequency 0, put that in the CSV. For example:
153,0
- Append these frequency values in different lines of the same CSV file. For example:
148,5
153,0
Can I do that with pandas? or should I move to other python lib?