I have a DataFrame I created by doing the following manipulations to a .fits file:
data_dict= dict()
for obj in sortedpab:
for key in ['FIELD', 'ID', 'RA' , 'DEC' , 'Z_50', 'Z_84','Z_16' , 'PAB_FLUX', 'PAB_FLUX_ERR']:
data_dict.setdefault(key, list()).append(obj[key])
gooddf = pd.DataFrame(data_dict)
gooddf['Z_ERR']= ((gooddf['Z_84'] - gooddf['Z_50']) + (gooddf['Z_50'] - gooddf['Z_16'])) / (2 *
gooddf['Z_50'])
gooddf['OBS_PAB'] = 12820 * (1 + gooddf['Z_50'])
gooddf.loc[gooddf['FIELD'] == "ERS" , 'FIELD'] = "ERSPRIME"
gooddf = gooddf[['FIELD' , 'ID' , 'RA' , 'DEC' , 'Z_50' , 'Z_ERR' , 'PAB_FLUX' , 'PAB_FLUX_ERR' ,
'OBS_PAB']]
gooddf = gooddf[gooddf.OBS_PAB <= 16500]
Which gives me a DataFrame with 351 rows and 9 columns. I would like to keep rows only according to certain indices, and I thought for example doing something of this sort:
indices = [5 , 6 , 9 , 10]
gooddf = gooddf[gooddf.index == indices]
where I would like it to keep only the rows with the index values listed in the array indices, but this is giving me issues.
I found a way to do this with a for loop:
good = np.array([5 , 6 , 9 , 12 , 14 , 15 , 18 , 21 , 24 , 29 , 30 , 35 , 36 , 37 , 46 , 48 ])
gooddf50 = pd.DataFrame()
for i in range(len(good)):
gooddf50 = gooddf50.append(gooddf[gooddf.index == good[i]])
Any thoughts on how to do this in a better way, preferably using just pandas?