Note that this answer only deals with (relatively) small, pre-determined sets.
The reason the other (simple) solution is inefficient is this: you want to generate 100 random numbers between 0 and 99. You get to the point where you have generated 90 random numbers, and just need 10 more.
The problem is that you're still generating numbers between 0 and 99 every time, except now your chance of finding a number that hasn't already been generated is 1 in 10. So 9 of every 10 numbers you generate has already been added to the list.
Once you get down to just needing 1 number, your chance of generating the remaining 1 that hasn't already been generated is 1 in 100. So for every 100 numbers you generate, only 1 of them will be the last possible number.
I'm sure this is simplifying things given that the Random
class is pseudo-random (i.e. it's an algorithm that appears random), but this does explain your situation and why the other answer will be slower.
An improved solution would be this:
// Add all of the numbers 0 to 100 to a list
var availableNumbers = new List<int>();
for (int i = 0; i < 100; ++i)
{
availableNumbers.Add(i);
}
Random random = new Random();
for (int i = 0; i < 40; ++i)
{
// Choose a random position in the available numbers list
var idx = random.Next(0, availableNumbers.Count);
// Print the number from this position in the list
Console.WriteLine(availableNumbers[idx]);
// Remove the item at this position
availableNumbers.RemoveAt(idx);
}
Because we start with a list of all available numbers, we are able to choose numbers from it at random. Removing items from the available numbers list means that they are not available to be chosen a second time. We no longer have to try many times to find an unused number, as removing them when we select them ensures that all of the numbers in the available numbers list are always only unused numbers.