Main problem
In Python, I have triangulated the surface of a (unit) sphere using an icosahedral mesh. I have a list simplices
of tuples containing the indices of the three vertices of each triangle, and I have a two lists describing the coordinates (in radians) of each vertex: its latitude and longitude.
For about a million points, I want to determine which triangle each point is in. I am looking for an efficient algorithm that returns the list indices of each triangle (indices corresponding to list simplices
).
I am willing to sacrifice memory over efficiency, so I am fine with constructing a tree or using some lookup method.
Caveats
The triangles are of roughly equal size, but not exactly, so I suspect that a simple nearest-neighbor KDTree implementation is not exact.
Extra information
The icosahedral mesh has been obtained using the stripy
package. It projects the vertices of the icosahedron onto the unit sphere and subsequently bisects the triangles, so that each edge is split in half, or conversely, each triangle is split in four. stripy
has a built-in method for calculating the triangle a point is contained in, but for a mesh refinement of 6 (i.e. 6 bisections) and about a million points, this takes hours. I suspect that this method does not make use of a tree/lookup method and I hope there is a method that significantly improves on this.