The parametric equations of the two curves are as follows:
Curve1: r(t) = (2(t-sin(t)),2(1 -cos(t)))
Curve2: s(t) = (2t - sin(t),2 - cos(t))
I need to find the points of intersection in the region [0,4π]
.
I was able to plot the graph for the mentioned region and observed 4 points of intersection. But I am not able to determine the exact points of intersection.
For non-parametric equations, fsolve
from sympy
can be used, but the curves which are given in their parametric forms, I am not able to find a workaround.
t = np.arange(-0.25*np.pi,4.25*np.pi,0.01)
rx = np.zeros(len(t))
ry = np.zeros(len(t))
for i in t:
rx = 2*(t - np.sin(t))
ry = 2*(1 - np.cos(t))
sx = np.zeros(len(t))
sy = np.zeros(len(t))
for i in t:
sx = 2*t - np.sin(t)
sy = 2 - np.cos(t)
plt.plot(rx,ry)
plt.plot(sx,sy)