Matlab and Julia have the backslash operator that solves linear systems. I don't really know what Matlab does, but Julia does not compute the inverse, but it computes the effect the inverse has on a given vector, which is computationally easier.
I have a numpy sparse matrix and I want to apply its pseudo-inverse to a vector. Does Python have to compute the pseudo-inverse first or is there a backslash-like operator I can use?
Edit: In a sense I want to solve a linear system Ax=b. However the matrix A does not have full rank and the vector b is not in A's range. So the system does not have a solution. So in practice I want to get the vector X that minimises the norm of Ax-b. This is exactly what the pseudo-inverse matrix does. My question is whether I there is a function that will give me that without having to compute the pseudo-inverse first.