Based on the OP comment I'm assuming that the requested image is square, for the sake of simplicity (TILE_SIZE
could be decomposed in a TILE_SIZE_X
and TILE_SIZE_Y
component). I'm also assuming that the image is 256-pixels wide TILE_SIZE=256
I'm giving both the pixel coordinates relative to the center of the image (distanceInPixels
function), and to the Lower Left Corner (imageCoordinates
function). Changing to the Upper Left Corner in case that's necessary should be trivial (X
will be equal and Y = TILE_SIZE -Y
).
<!DOCTYPE html>
<html>
<body>
<p id="demo"></p>
<script>
var latLngMarker = {};
var latLngCenter = {};
// Image dimensions in pixels
var TILE_SIZE = 256;
var zoom = 5;
// Coordinates of the marker to be projected on the image
latLngMarker.lat = 41.850;
latLngMarker.lng = -87.650;
// Coordinates of the image center
latLngCenter.lat = 41.850;
latLngCenter.lng = -87.650;
// Coordinates projected on the cartographic plane (Mercator)
var centerProjected = project(latLngCenter);
var markerProjected = project(latLngMarker);
// The result should be X=Y=0, because I made Marker Lat Lng = Center Lat Lng
var distanceFromCenter = distanceInPixels(centerProjected, markerProjected);
alert("X: " + distanceFromCenter.x + " Y: " + distanceFromCenter.y);
// The result should be X=Y=256/2=128 for the same reason
var coords = imageCoordinates(centerProjected, markerProjected);
alert("X: " + coords.x + " Y: " + coords.y);
// The horizontal distance represented by one pixel for a given latitude and zoom level
function pixelResolution (latLng, zoom) {
var radius = 6378137.0 // semi-axis of WGS84 ellipsoid
var circumference = 2 * Math.PI * radius;
var distancePerImage = circumference * Math.cos(latLng.lat * Math.PI / 180.0) / Math.pow(2,zoom);
var distancePerPixel = distancePerImage / TILE_SIZE;
return distancePerPixel
}
// Web mercator projection.
function project(latLng) {
var siny = Math.sin(latLng.lat * Math.PI / 180);
siny = Math.min(Math.max(siny, -0.9999), 0.9999);
var xy = {};
xy.x = TILE_SIZE * (0.5 + latLng.lng / 360);
xy.y = TILE_SIZE * (0.5 - Math.log((1 + siny) / (1 - siny)) / (4 * Math.PI));
return xy
}
// Marker pixel coordinates relative to the image Center
function distanceInPixels(centerProjected, markerProjected) {
var delta = {};
var spacing = pixelResolution(latLngCenter, zoom);
delta.x = Math.round((centerProjected.x - markerProjected.x)/spacing);
delta.y = Math.round((centerProjected.y - markerProjected.y)/spacing);
return delta
}
// Marker pixel coordinates relative to the Lower Left Corner
function imageCoordinates(centerProjected, markerProjected) {
var pixelCoordinates = {};
var spacing = pixelResolution(latLngCenter, zoom);
var deltaPixels = distanceInPixels(centerProjected, markerProjected);
pixelCoordinates.x = TILE_SIZE / 2 - deltaPixels.x;
pixelCoordinates.y = TILE_SIZE / 2 - deltaPixels.y;
return pixelCoordinates
}
</script>
</body>
</html>
Note: I can confirm that the pixelResolution
function only works with square image tiles with dimensions of powers of 2. The Math.pow(2,zoom);
snippet gives the game away!
Web Mercator function based on:
https://developers-dot-devsite-v2-prod.appspot.com/maps/documentation/javascript/examples/map-coordinates
Horizontal distance represented by one pixel from :
https://wiki.openstreetmap.org/wiki/Zoom_levels
See also:
https://wiki.openstreetmap.org/wiki/Slippy_map_tilenames#Resolution_and_Scale