I would like to effectively generate a numpy array of tuples which size is the multiple of the dimensions of each axis using numpy.arange() and exclusively using numpy functions. For example: the size of a_list below is max_i*max_j*max_k.
Moreover, the array that I would like to obtain for the example below looks like this : [(0,0,0), (0,0,1), ..., (0, 0, 9), (0, 1, 0), (0, 1, 1), ..., (9, 4, 14)]
a_list = list()
max_i = 10
max_j = 5
max_k = 15
for i in range(0, max_i):
for j in range(0, max_j):
for k in range(0, max_k):
a_list.append((i, j, k))
The loop's complexity above, relying on list and for loops, is O(max_i*max_j*max_k), I would like to use a factorized way to generate a lookalike array of tuples in numpy. Is it possible ?