I am trying to find performance and Mean squared error of linnerud dataset with linear regression technique. I am stuck while passing data and get error "ValueError: Found input variables with inconsistent numbers of samples: [10, 1]". Linnerud dataset has three features and three columns in target where I only want to use one feature which is chinup. Can someone help me in fixing at the point I am stuck?
Following is what I have tried so far, by referring https://scikit-learn.org/stable/auto_examples/linear_model/plot_ols.html
from sklearn import datasets
from sklearn import linear_model
from sklearn.metrics import mean_squared_error, r2_score
import matplotlib.pyplot as plt
import numpy as np
linnerud = datasets.load_linnerud()
print(linnerud)
# Use only one feature
linnerud_X = linnerud.data[:, np.newaxis, 0]
print(linnerud_X)
X = np.array(linnerud_X).reshape((1,-1))
print(X)
# Split the data into training/testing sets
linnerud_X_train = linnerud_X[:-10]
linnerud_X_test = linnerud_X[-10:]
#print(linnerud_X_train)
#print(linnerud_X_test)
Y = np.array(linnerud.target).reshape((1,-1))
# Split the targets into training/testing sets
linnerud_y_train = Y
#linnerud_y_test #= Y[-10:]
print(linnerud_y_train)
#print(linnerud_y_test)
# Create linear regression object
regr = linear_model.LinearRegression()
# Train the model using the training sets
regr.fit(linnerud_X_train, linnerud_y_train)
# Make predictions using the testing set
linnerud_y_pred = regr.predict(linnerud_X_test)
I am expecting similar results what is been achieved in the following example, https://scikit-learn.org/stable/auto_examples/linear_model/plot_ols.html