I have a dataframe df1:
Date_1 Date_2 i_count c_book
01/09/2019 02/08/2019 2 204
01/09/2019 03/08/2019 2 211
01/09/2019 04/08/2019 2 218
01/09/2019 05/08/2019 2 226
01/09/2019 06/08/2019 2 234
01/09/2019 07/08/2019 2 242
01/09/2019 08/08/2019 2 251
01/09/2019 09/08/2019 2 259
01/09/2019 10/08/2019 3 269
01/09/2019 11/08/2019 3 278
01/09/2019 12/08/2019 3 288
01/09/2019 13/08/2019 3 298
01/09/2019 14/08/2019 3 308
01/09/2019 15/08/2019 3 319
01/09/2019 16/08/2019 4 330
01/09/2019 17/08/2019 4 342
01/09/2019 18/08/2019 4 354
01/09/2019 19/08/2019 4 366
01/09/2019 20/08/2019 4 379
01/09/2019 21/08/2019 5 392
01/09/2019 22/08/2019 5 406
01/09/2019 23/08/2019 6 420
01/09/2019 24/08/2019 6 435
01/09/2019 25/08/2019 7 450
01/09/2019 26/08/2019 8 466
01/09/2019 27/08/2019 9 483
01/09/2019 28/08/2019 10 500
01/09/2019 29/08/2019 11 517
01/09/2019 30/08/2019 12 535
01/09/2019 31/08/2019 14 554
I want to expand the dataset based on i_count
. i_count
is the count of rows to be replicated. so lets say if i_count = 2
implies that 2 rows need to be replicated for the same.
Also, I want to create a new column c_book_i
such that c_book
should be divided within the entries in the dataset. for example, if i_count = 2
, signifies that new dataframe should have 2 entries and c_book_i
should have 2 entries such that sum(c_book_i) = c_book
. The last constraint is that I want to have c_book_i > 10
in all the cases.
so Far :
def f(x):
i = np.random.random(len(x))
j = i/sum(i) * x
return j
joined_df2 = df1.reindex(df1.index.repeat(df1['i_count']))
joined_df2['c_book_i'] = joined_df2.groupby(['Date_1','Date_2'])['c_book'].transform(f)
This provides me the same but without the check that the c_book should be greater than 10. there are a lot of values coming less than 10.
Can anyone help with the same.
Thanks