Not really an answer but too long for a comment.
A few too many variables can impact this to give informed advice, so the following are just some general hints.
Is this over a network or local on the server? If the database is remote server then you are paying a heavy network price. I would suggest (if possible) running the extract on the server using the BEQUEATH protocol to avoid using the network. Once the file(s) complete, is will be quicker to compress and transfer to destination than transferring the data direct from database to local file via JDBC row processing.
With JDBC remember to set the cursor fetch size to reduce round tripping - setFetchSize
. The default value is tiny (10 I think), try something like 1000 to see how that helps.
As for the query, you are writing to a file so even though Oracle might process the query in parallel, your write to file process probably doesn't so it's a bottleneck.
My approach would be to write the Java program to operate off a range of values as command line parameters, and experiment to find which range size and concurrent instances of the Java give optimal performance. The range will likely fall within discrete partitions so you will benefit from partition pruning (assuming the range value is an a indexed column ideally the partition key).
Roughly speaking I would start with range of 5m, and run concurrent instances that match the number of CPU cores - 2; this is not a scientifically derive number just one that I tend to use as my first stab and see what happens.