I just started with deep learning and i want to get the input/output of each layer in real-time. I am using google colab with tensorflow 2 and python 3. I tried to get the layers like this but for some reason that i don't understand is not working. Any help will be appreciated.
# Here are imports
from __future__ import absolute_import, division, print_function, unicode_literals
try:
# %tensorflow_version only exists in Colab.
%tensorflow_version 2.x
except Exception:
pass
import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt
from tensorflow.keras import backend as K
# I am using CIFAR10 dataset
(train_images, train_labels), (test_images, test_labels) =
datasets.cifar10.load_data()
Normalize pixel values to be between 0 and 1
train_images, test_images = train_images / 255.0, test_images / 255.0
# Here is the model
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))
# Compilation of the model
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
history = model.fit(train_images, train_labels, epochs=10,
validation_data=(test_images, test_labels))
# Based on
https://stackoverflow.com/questions/41711190/keras-how-to-get-the-output-of-each-layer
# I tried this
tf.compat.v1.disable_eager_execution()
inp = model.input # input placeholder
outputs = [layer.output for layer in model.layers] # all layer outputs
functors = [K.function([inp, K.learning_phase()], [out]) for out in outputs] # evaluation functions
Testing
test = np.random.random(input_shape)[np.newaxis,...]
layer_outs = [func([test, 1.]) for func in functors]
print(layer_outs)
#The error appear at line
functors = [K.function([inp, K.learning_phase()], [out]) for out in outputs]
#I got this error message
Tensor Tensor("conv2d/Identity:0", shape=(None, 30, 30, 32), dtype=float32) is not an element of this graph.