The purpose of repeatable reads is to provide read-consistent data:
- within a query, all the results should reflect the state of the data at a
specific point in time.
- within a transaction, the same query should return the same results
even if it is repeated.
In Oracle, queries are read-consistent as of the moment the query started. If data changes during the query, the query reads the version of the data that existed at the start of the query. That version is available in the "UNDO".
Bottom line: Oracle by default has an isolation level of READ COMMITTED, which guarantees read-consistent data within a query, but not within a transaction.
You talk about Tx A and Tx B. In Oracle, a session that does not change any data does not have a transaction.
Assume the default isolation level of READ COMMITTED. Assume the J2EE application uses a connection pool and is stateless.
- app thread A connects to session X and reads a row.
- app thread B connects to session Y and updates the row with commit.
- app thread A connects to session Z and reads the same row, seeing a different result.
Notice that there is nothing any database can do here. Even if all the sessions had the SERIALIZABLE isolation level, session Z has no idea what is going on in session X. Besides, thread A cannot leave a transaction hanging in session X when it disconnects.
To your question, notice that app thread A never changed any data. The human user behind app thread A queried the same data twice and saw two different results, that is all.
Now let's do an update:
- app thread A connects to session X and reads a row.
- app thread B connects to session Y and updates the row with commit.
- app thread A connects to session Z and updates the same row with commit.
Here the same row had three different values, not two. The human user behind thread A saw the first value and changed it to the third value without ever seeing the second value! That is what we mean by a "lost update".
The idea behind optimistic locking is to notify the human user that, between the time they queried the data and the time they asked to update it, someone else changed the data first. They should look at the most recent values before confirming the update.
To simplify:
- "non-repeatable reads" happen if you query, then I update, then you query.
- "lost updates" happen if you query, then I update, then you update. Notice that if you query the data again, you need to see the new value in order to decide what to do next.
Suggested reading: https://blogs.oracle.com/oraclemagazine/on-transaction-isolation-levels
Best regards, Stew Ashton