With Perception learning, I am really confused on initializing and updating weight. If I have a sample data that contains 2 inputs x0 and x1 and I have 80 rows of these 2 inputs, hence 80x2 matrix.
Do I need to initialize weight as a matrix of 80x2 or just 2 values w0 and w1 ? Is final goal of perceptron learning is to find 2 weights w0 and w1 which should fit for all 80 input sample rows ?
I have following code and my errors never get to 0, despite going up to 10,000 iterations.
x=input matrix of 80x2
y=output matrix of 80x1
n = number of iterations
w=[0.1,0.1]
learningRate = 0.1
for i in range(n):
expectedT = y.transpose();
xT = x.transpose()
prediction = np.dot (w,xT)
for i in range (len(x)):
if prediction[i] >= 0:
ypred[i] = 1
else:
ypred[i] = 0
error = expectedT - ypred
# updating the weights
w = np.add(w,learningRate*(np.dot(error,x)))
globalError = globalError + np.square(error)