I want to create a tensor which is some kind of a transformation matrix (rotation matrix for instance)
My model predicts 2 parameters: x1 and x2
so the output is a tensor of (B, 2), when B is number of batches.
however, when I write my loss, I have to know this "B" since I want to iterate over it:
def get_rotation_tensor(x):
roll_mat = K.stack([ [[1, 0, 0],
[0, K.cos(x[i, 0]), -K.sin(x[i, 0])],
[0, K.sin(x[i, 0]), K.cos(x[i, 0])]] for i in range(BATCH_SIZE)])
pitch_mat = K.stack([ [[K.cos(x[i, 1]), 0, K.sin(x[i, 1])],
[0, 1, 0],
[-K.sin(x[i, 1]), 0, K.cos(x[i, 1])]] for i in range(BATCH_SIZE)])
return K.batch_dot(pitch_mat, roll_mat)
the only solution I could have think of is to pre-define the BATCH_SIZE in advance.. but is there a way to write a general loss function that will work for every batch size?
THANKS