I am having a RDD[Map[String,Any]] and i am trying to convert it into a Dataframe. I am not having a schema that i can specify the Dataframe.
I tried to do a rdd.toDF but that didn't help. It was throwing up an error as follows.
Exception in thread "main" java.lang.ClassNotFoundException: scala.Any
at java.net.URLClassLoader.findClass(URLClassLoader.java:382)
at java.lang.ClassLoader.loadClass(ClassLoader.java:424)
at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:349)
at java.lang.ClassLoader.loadClass(ClassLoader.java:357)
at java.lang.Class.forName0(Native Method)
at java.lang.Class.forName(Class.java:348)
at scala.reflect.runtime.JavaMirrors$JavaMirror.javaClass(JavaMirrors.scala:555)
at scala.reflect.runtime.JavaMirrors$JavaMirror$$anonfun$classToJava$1.apply(JavaMirrors.scala:1211)
at scala.reflect.runtime.JavaMirrors$JavaMirror$$anonfun$classToJava$1.apply(JavaMirrors.scala:1203)
at scala.reflect.runtime.TwoWayCaches$TwoWayCache$$anonfun$toJava$1.apply(TwoWayCaches.scala:49)
at scala.reflect.runtime.Gil$class.gilSynchronized(Gil.scala:19)
at scala.reflect.runtime.JavaUniverse.gilSynchronized(JavaUniverse.scala:16)
at scala.reflect.runtime.TwoWayCaches$TwoWayCache.toJava(TwoWayCaches.scala:44)
at scala.reflect.runtime.JavaMirrors$JavaMirror.classToJava(JavaMirrors.scala:1203)
at scala.reflect.runtime.JavaMirrors$JavaMirror.runtimeClass(JavaMirrors.scala:194)
at scala.reflect.runtime.JavaMirrors$JavaMirror.runtimeClass(JavaMirrors.scala:54)
at org.apache.spark.sql.catalyst.ScalaReflection$.getClassFromType(ScalaReflection.scala:700)
at org.apache.spark.sql.catalyst.ScalaReflection$$anonfun$org$apache$spark$sql$catalyst$ScalaReflection$$dataTypeFor$1.apply(ScalaReflection.scala:84)
at org.apache.spark.sql.catalyst.ScalaReflection$$anonfun$org$apache$spark$sql$catalyst$ScalaReflection$$dataTypeFor$1.apply(ScalaReflection.scala:65)
at scala.reflect.internal.tpe.TypeConstraints$UndoLog.undo(TypeConstraints.scala:56)
at org.apache.spark.sql.catalyst.ScalaReflection$class.cleanUpReflectionObjects(ScalaReflection.scala:824)
at org.apache.spark.sql.catalyst.ScalaReflection$.cleanUpReflectionObjects(ScalaReflection.scala:39)
at org.apache.spark.sql.catalyst.ScalaReflection$.org$apache$spark$sql$catalyst$ScalaReflection$$dataTypeFor(ScalaReflection.scala:64)
at org.apache.spark.sql.catalyst.ScalaReflection$$anonfun$org$apache$spark$sql$catalyst$ScalaReflection$$serializerFor$1.apply(ScalaReflection.scala:512)
at org.apache.spark.sql.catalyst.ScalaReflection$$anonfun$org$apache$spark$sql$catalyst$ScalaReflection$$serializerFor$1.apply(ScalaReflection.scala:445)
at scala.reflect.internal.tpe.TypeConstraints$UndoLog.undo(TypeConstraints.scala:56)
at org.apache.spark.sql.catalyst.ScalaReflection$class.cleanUpReflectionObjects(ScalaReflection.scala:824)
at org.apache.spark.sql.catalyst.ScalaReflection$.cleanUpReflectionObjects(ScalaReflection.scala:39)
at org.apache.spark.sql.catalyst.ScalaReflection$.org$apache$spark$sql$catalyst$ScalaReflection$$serializerFor(ScalaReflection.scala:445)
at org.apache.spark.sql.catalyst.ScalaReflection$.serializerFor(ScalaReflection.scala:434)
at org.apache.spark.sql.catalyst.encoders.ExpressionEncoder$.apply(ExpressionEncoder.scala:71)
at org.apache.spark.sql.SQLImplicits.newMapEncoder(SQLImplicits.scala:172)
Sample Input
val data: RDD[Map[String, Any]] = appContext.sc.parallelize(List(
Map("A" -> "B"), //Value could be String
Map("C" -> 123), //Value could be Numerical(Long, Double, Int etc)
Map("D" -> Map("E" -> "F")), // Could be another Map
Map("G" -> List("H" , "I")), // List of values
Map("J" -> List( // List Of Maps
Map("K" -> "L"),
Map("M" -> "N")
))
))
I was able to make it into a dataframe by doing the following(JsonUtils is wrapper around Jackson), but is giving me performance issues.
def convert(data: RDD[Map[String, Any]]): DataFrame = {
sparkSession.read.json(data.map(each => JsonUtils.toJson(each)))
}
Is there any other method that we could use to get this achieved which could give better performance? Any suggestions are much appreciated!!
Update: I am not using the DataFrame for any processing as such. I just want to write the output in 3 different format and converting to DataFrame was the best method i could find to get a consistent output. Any other suggestion to achieve this without actually converting to Dataframe would also be really helpful.
df.write.avro("/path/to/avroFile")
df.write.parquet("/path/to/parquetFile")
df.write.json("/path/to/jsonFile")