I am training with tensorflow2.0 and tensorflow_datasets. But I am not understand: why does the training accuracy and loss and valdataion accuracy and loss are different?
This is my code:
import tensorflow as tf
import tensorflow_datasets as tfds
data_name = 'uc_merced'
dataset = tfds.load(data_name)
# the train_data and the test_data are same dataset
train_data, test_data = dataset['train'], dataset['train']
def parse(img_dict):
img = tf.image.resize_with_pad(img_dict['image'], 256, 256)
#img = img / 255.
label = img_dict['label']
return img, label
train_data = train_data.map(parse)
train_data = train_data.batch(96)
test_data = test_data.map(parse)
test_data = test_data.batch(96)
strategy = tf.distribute.MirroredStrategy()
with strategy.scope():
model = tf.keras.applications.ResNet50(weights=None, classes=21,
input_shape=(256, 256, 3))
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(train_data, epochs=50, verbose=2, validation_data=test_data)
It is very simple and you can run it on your computer. you can see my train data and validation data are the same train_data, test_data = dataset['train'], dataset['train']
.
But the train accuracy (loss) are not the same with validation accuracy (loss). Why is it happen? Is this the bug of tensorflow2.0?
Epoch 1/50
22/22 - 51s - loss: 3.3766 - accuracy: 0.2581 - val_loss: 0.0000e+00 - val_accuracy: 0.0000e+00
Epoch 2/50
22/22 - 30s - loss: 1.8221 - accuracy: 0.4590 - val_loss: 123071.9851 - val_accuracy: 0.0476
Epoch 3/50
22/22 - 30s - loss: 1.4701 - accuracy: 0.5405 - val_loss: 12767.8928 - val_accuracy: 0.0519
Epoch 4/50
22/22 - 30s - loss: 1.2113 - accuracy: 0.6071 - val_loss: 3.9311 - val_accuracy: 0.1186
Epoch 5/50
22/22 - 31s - loss: 1.0846 - accuracy: 0.6567 - val_loss: 23.7775 - val_accuracy: 0.1386
Epoch 6/50
22/22 - 31s - loss: 0.9358 - accuracy: 0.7043 - val_loss: 15.3453 - val_accuracy: 0.1543
Epoch 7/50
22/22 - 32s - loss: 0.8566 - accuracy: 0.7243 - val_loss: 8.0415 - val_accuracy: 0.2548