I'm trying to profile my python script using cProfile
and displaying the results with pstats
. In particular, I'm trying to use the pstats
function p.sort_stats('time').print_callers(20)
to print only the top 20 functions by time, as decribed in the documentation.
I expect to get only the top 20 results (functions profiled and their calling functions ordered by time), instead, I get a seemingly unfiltered list of over 1000 functions that completely saturates my terminal (hence I'm estimating over a 1000 functions).
Why is my restriction argument (i.e. 20
) being ignored by print_callers()
and how can I fix this?
I've tried looking up an answer and couldn't find one. And I tried to create a minimal reproducible example, but when I do, I can't reproduce the problem (i.e. it works fine).
my profiling code is:
import cProfile
import pstats
if __name__ == '__main__':
cProfile.run('main()', 'mystats')
p = pstats.Stats('mystats')
p.sort_stats('time').print_callers(20)
I'm trying to avoid having to post my full code, so if someone else has encountered this issue before, and can answer without seeing my full code, that would be great.
Thank you very much in advance.
Edit 1: Partial output:
Ordered by: internal time
List reduced from 1430 to 1 due to restriction <1>
Function was called by...
ncalls tottime cumtime
{built-in method builtins.isinstance} <- 2237 0.000 0.000 <frozen importlib._bootstrap>:997(_handle_fromlist)
9 0.000 0.000 <frozen importlib._bootstrap_external>:485(_compile_bytecode)
44 0.000 0.000 <frozen importlib._bootstrap_external>:1117(_get_spec)
4872 0.001 0.001 C:\Users\rafael.natan\AppData\Local\Continuum\anaconda3\lib\_strptime.py:321(_strptime)
5 0.000 0.000 C:\Users\rafael.natan\AppData\Local\Continuum\anaconda3\lib\abc.py:196(__subclasscheck__)
26 0.000 0.000 C:\Users\rafael.natan\AppData\Local\Continuum\anaconda3\lib\calendar.py:58(__getitem__)
14 0.000 0.000 C:\Users\rafael.natan\AppData\Local\Continuum\anaconda3\lib\calendar.py:77(__getitem__)
2 0.000 0.000 C:\Users\rafael.natan\AppData\Local\Continuum\anaconda3\lib\distutils\version.py:331(_cmp)
20 0.000 0.000 C:\Users\rafael.natan\AppData\Local\Continuum\anaconda3\lib\enum.py:797(__or__)
362 0.000 0.000 C:\Users\rafael.natan\AppData\Local\Continuum\anaconda3\lib\enum.py:803(__and__)
1 0.000 0.000 C:\Users\rafael.natan\AppData\Local\Continuum\anaconda3\lib\inspect.py:73(isclass)
30 0.000 0.000 C:\Users\rafael.natan\AppData\Local\Continuum\anaconda3\lib\json\encoder.py:182(encode)
2 0.000 0.000 C:\Users\rafael.natan\AppData\Local\Continuum\anaconda3\lib\ntpath.py:34(_get_bothseps)
1 0.000 0.000 C:\Users\rafael.natan\AppData\Local\Continuum\anaconda3\lib\ntpath.py:75(join)
4 0.000 0.000 C:\Users\rafael.natan\AppData\Local\Continuum\anaconda3\lib\ntpath.py:122(splitdrive)
3 0.000 0.000 C:\Users\rafael.natan\AppData\Local\Continuum\anaconda3\lib\ntpath.py:309(expanduser)
4 0.000 0.000 C:\Users\rafael.natan\AppData\Local\Continuum\anaconda3\lib\os.py:728(check_str)
44 0.000 0.000 C:\Users\rafael.natan\AppData\Local\Continuum\anaconda3\lib\re.py:249(escape)
4 0.000 0.000 C:\Users\rafael.natan\AppData\Local\Continuum\anaconda3\lib\re.py:286(_compile)
609 0.000 0.000 C:\Users\rafael.natan\AppData\Local\Continuum\anaconda3\lib\site-packages\dateutil\parser\_parser.py:62(__init__)
1222 0.000 0.000 C:\Users\rafael.natan\AppData\Local\Continuum\anaconda3\lib\site-packages\numpy\core\_methods.py:48(_count_reduce_items)
1222 0.000 0.000 C:\Users\rafael.natan\AppData\Local\Continuum\anaconda3\lib\site-packages\numpy\core\_methods.py:58(_mean)
1 0.000 0.000 C:\Users\rafael.natan\AppData\Local\Continuum\anaconda3\lib\site-packages\numpy\core\arrayprint.py:834(__init__)
1393 0.000 0.000 C:\Users\rafael.natan\AppData\Local\Continuum\anaconda3\lib\site-packages\numpy\core\fromnumeric.py:1583(ravel)
1239 0.000 0.000 C:\Users\rafael.natan\AppData\Local\Continuum\anaconda3\lib\site-packages\numpy\core\fromnumeric.py:1966(sum)
...