I have two .csv files "train_id.csv" and "train_ub.csv", I want to load them as pandas dataframes. Their dimensions are different, but they have only common column, let's say:
train_id:
ID id_01 id_02 id_03 id_04
1 0.0 1.0 5.2 7.1
2 0.5 7.7 3.4 9.8
5 1.5 0.8 1.6 2.5
7 3.0 0.2 3.4 6.3
8 5.5 1.8 7.5 7.0
9 7.2 2.6 9.1 1.1
11 9.5 3.5 2.2 0.3
while train_ub:
ID ub_01 ub_02 ub_03 ub_04
1 0.0 1.0 9.2 8.3
2 1.5 2.7 0.4 4.9
3 2.7 4.8 7.6 3.7
4 4.8 9.2 2.4 5.4
6 6.0 5.8 5.5 0.6
10 9.1 3.6 4.1 2.0
11 7.3 7.5 0.2 9.5
One may see that they have in common the first column but there are missing values in each dataframe. Is there a way in pandas to merge them column wise in order to get a dataframe of the form:
ID id_01 id_02 id_03 id_04 ub_01 ub_02 ub_03 ub_04
1 0.0 1.0 5.2 7.1 0.0 1.0 9.2 8.3
2 0.5 7.7 3.4 9.8 1.5 2.7 0.4 4.9
3 NaN NaN NaN NaN 2.7 4.8 7.6 3.7
4 NaN NaN NaN NaN 4.8 9.2 2.4 5.4
5 1.5 0.8 1.6 2.5 NaN NaN NaN NaN
6 NaN NaN NaN NaN 6.0 5.8 5.5 0.6
7 3.0 0.2 3.4 6.3 NaN NaN NaN NaN
8 5.5 1.8 7.5 7.0 NaN NaN NaN NaN
9 7.2 2.6 9.1 1.1 NaN NaN NaN NaN
10 NaN NaN NaN NaN 9.1 3.6 4.1 2.0
11 9.5 3.5 2.2 0.3 9.5 3.5 2.2 0.3
PS: Notice that this is an oversimplified example, the real databases have the shapes id(144233, 41) and ub(590540, 394).