Inferring from a model that has been trained on a sequence
So it's a pretty common thing to do in RNN models and in Keras the best way (at least from what I know) is to create two different models.
- One model for training (which uses sequences instead of individual items)
- Another model for predicting (which uses a single element instead of a sequence)
So let's see an example. Suppose you have the following model.
from tensorflow.keras import models, layers
n_chars = 26
timesteps = 10
inp = layers.Input(shape=(timesteps, n_chars))
lstm = layers.LSTM(100, return_sequences=True)
out1 = lstm(inp)
dense = layers.Dense(n_chars, activation='softmax')
out2 = layers.TimeDistributed(dense)(out1)
model = models.Model(inp, out2)
model.summary()
Now to infer from this model, you create another model which looks like the one below.
inp_infer = layers.Input(shape=(1, n_chars))
# Inputs to feed LSTM states back in
h_inp_infer = layers.Input(shape=(100,))
c_inp_infer = layers.Input(shape=(100,))
# We need return_state=True so we are creating a new layer
lstm_infer = layers.LSTM(100, return_state=True, return_sequences=True)
out1_infer, h, c = lstm_infer(inp_infer, initial_state=[h_inp_infer, c_inp_infer])
out2_infer = layers.TimeDistributed(dense)(out1_infer)
# Our model takes the previous states as inputs and spits out new states as outputs
model_infer = models.Model([inp_infer, h_inp_infer, c_inp_infer], [out2_infer, h, c])
# We are setting the weights from the trained model
lstm_infer.set_weights(lstm.get_weights())
model_infer.summary()
So what's different. You see that we have defined a new input layer which accepts an input which has only one timestep (or in other words, just a single item). Then the model outputs an output which has a single timestep (technically we don't need the TimeDistributedLayer
. But I've kept that for consistency). Other than that we take the previous LSTM state output as an input and produces the new state as the output. More specifically we have the following inference model.
- Input:
[(None, 1, n_chars) (None, 100), (None, 100)]
list of tensor
- Output:
[(None, 1, n_chars), (None, 100), (None, 100)]
list of Tensor
Note that I'm updating the weights of the new layers from the trained model or using the existing layers from the training model. It will be a pretty useless model if you don't reuse the trained layers and weights.
Now we can write inference logic.
import numpy as np
x = np.random.randint(0,2,size=(1, 1, n_chars))
h = np.zeros(shape=(1, 100))
c = np.zeros(shape=(1, 100))
seq_len = 10
for _ in range(seq_len):
print(x)
y_pred, h, c = model_infer.predict([x, h, c])
y_pred = x[:,0,:]
y_onehot = np.zeros(shape=(x.shape[0],n_chars))
y_onehot[np.arange(x.shape[0]),np.argmax(y_pred,axis=1)] = 1.0
x = np.expand_dims(y_onehot, axis=1)
This part starts with an initial x, h, c
. Gets the prediction y_pred, h, c
and convert that to an input in the following lines and assign it back to x, h, c
. So you keep going for n
iterations of your choice.
About masking zeros
Keras does offer a Masking
layer which can be used for this purpose. And the second answer in this question seems to be what you're looking for.