In my most recent question I faced a problem having to do with the axis when using a different library.
In this particular case, I'm using the same dataset where the variable present in X has only two possible values - 2009 or 2010.
2009,01,52.4
2009,01,49.5
2009,01,53.2
2009,01,48.2
2009,01,53.9
2009,01,42.8
2009,01,56.4
2009,01,57
2009,01,50.3
2009,01,57.4
2009,01,45.2
2009,01,55
2009,01,47.1
2009,01,42.2
2009,01,57.1
2009,01,51.7
2009,01,56.8
2009,01,56.9
2009,01,55
2009,01,52.9
2009,01,52.9
2009,01,57
2009,01,45
2009,01,52.8
2009,01,52
2009,01,55.1
2009,01,53.3
2009,01,55.2
2009,01,53.2
2009,01,56.9
2009,01,55.9
2009,02,54.7
2009,02,53.1
2009,02,54.2
2009,02,56.2
2009,02,58.5
2009,02,50.9
2009,02,57.7
2009,02,54.1
2009,02,54.5
2009,02,55.3
2009,02,53.4
2009,02,53.8
2009,02,51.3
2009,02,52.3
2009,02,53
2009,02,53.6
2009,02,55
2009,02,53
2009,02,53.6
2009,02,52.5
2009,02,54.1
2009,02,50.1
2009,02,52.2
2009,02,54.3
2009,02,52.4
2009,02,53.2
2009,02,52.5
2009,02,52.7
2009,03,56.2
2009,03,58.7
2009,03,58.2
2009,03,63
2009,03,55
2009,03,55.4
2009,03,55.8
2009,03,63.8
2009,03,56
2009,03,52.3
2009,03,55.6
2009,03,56.8
2009,03,57.4
2009,03,58.7
2009,03,59.9
2009,03,57.7
2009,03,55.3
2009,03,54.9
2009,03,61.8
2009,03,54.1
2009,03,52.9
2009,03,55.5
2009,03,55.3
2009,03,66.4
2009,03,55.7
2009,03,53.2
2009,04,55.4
2009,04,60
2009,04,54.9
2009,04,55.3
2009,04,57.5
2009,04,55.8
2009,04,57.6
2009,04,55.7
2009,04,56.4
2009,04,54
2009,04,55.8
2009,04,56.8
2009,04,54.8
2009,04,55.8
2009,04,55.8
2009,04,53.5
2009,04,56.8
2009,04,54
2009,04,56.7
2009,04,57.2
2009,04,57.8
2009,04,57.3
2009,04,57.2
2009,04,57.2
2009,04,56.2
2009,04,55.2
2009,04,54.7
2009,04,57
2009,04,55.9
2009,05,59.8
2009,05,58.9
2009,05,59.3
2009,05,58.9
2009,05,60.4
2009,05,59.1
2009,05,58.5
2009,05,73.4
2009,05,62.5
2009,05,61.4
2009,05,61.1
2009,05,61.6
2009,05,67.6
2009,05,66.5
2009,05,58.6
2009,05,61.1
2009,05,62
2009,05,72.1
2009,05,59.3
2009,05,59.6
2009,05,61
2009,05,57.1
2009,05,59.2
2009,05,60.4
2009,05,60.1
2009,05,58.5
2009,05,58.9
2009,05,59.8
2009,05,62.6
2009,05,60.9
2009,05,59.5
2009,06,63.8
2009,06,65.4
2009,06,64.7
2009,06,64
2009,06,65.8
2009,06,68.3
2009,06,63.9
2009,06,64.2
2009,06,61.9
2009,06,62.9
2009,06,63.9
2009,06,69.7
2009,06,63.7
2009,06,63.4
2009,06,63.8
2009,06,64.5
2009,06,64.4
2009,06,63.9
2009,06,66.6
2009,06,70.3
2009,06,67.1
2009,06,65.8
2009,06,65.5
2009,06,62.9
2009,06,64.4
2009,06,65.4
2009,06,64.4
2009,06,63.3
2009,06,66.3
2009,06,66.7
2009,07,64.8
2009,07,66
2009,07,66.8
2009,07,69.9
2009,07,65.9
2009,07,68.6
2009,07,67.6
2009,07,66.7
2009,07,65.5
2009,07,65
2009,07,66.5
2009,07,66.7
2009,07,67.1
2009,07,67.4
2009,07,64.8
2009,07,65.8
2009,07,64.7
2009,07,66
2009,07,68
2009,07,66
2009,07,64.1
2009,07,65.8
2009,07,65
2009,07,63.3
2009,08,65.9
2009,08,65
2009,08,65.9
2009,08,64
2009,08,66.1
2009,08,64.5
2009,08,64
2009,08,66.8
2009,08,65
2009,08,64.7
2009,08,64.8
2009,08,65.8
2009,08,64.9
2009,08,64.9
2009,08,65.1
2009,08,65.2
2009,08,67
2009,08,64.8
2009,08,65.6
2009,08,66.1
2009,08,64.9
2009,08,67.1
2009,08,64.7
2009,08,64.9
2009,08,65.1
2009,08,64.1
2009,08,64.6
2009,08,66.5
2009,08,65.4
2009,08,65
2009,09,64.2
2009,09,63.1
2009,09,65.3
2009,09,64.2
2009,09,64.7
2009,09,63.9
2009,09,70.9
2009,09,70.1
2009,09,65
2009,09,65.5
2009,09,65.4
2009,09,68.1
2009,09,64.4
2009,09,65.1
2009,09,65.7
2009,09,63.2
2009,09,64.5
2009,09,64.8
2009,09,66.4
2009,09,64.9
2009,09,67.5
2009,09,66.4
2009,09,65.7
2009,09,65
2009,09,64.4
2009,09,62.5
2009,09,62.9
2009,09,63.7
2009,09,63.3
2009,10,66.6
2009,10,62.9
2009,10,63.1
2009,10,65.4
2009,10,69.4
2009,10,71.1
2009,10,64.1
2009,10,66.9
2009,10,69.4
2009,10,66.6
2009,10,63
2009,10,67.2
2009,10,68.6
2009,10,65.2
2009,10,64
2009,10,62.4
2009,10,65
2009,10,64.3
2009,10,68.6
2009,10,68
2009,10,63
2009,10,61.2
2009,10,65.3
2009,10,64.7
2009,10,67.1
2009,10,67.2
2009,10,68.5
2009,10,65.4
2009,10,64
2009,11,58.4
2009,11,66.4
2009,11,58.2
2009,11,55.7
2009,11,59.4
2009,11,62.7
2009,11,61.5
2009,11,62.2
2009,11,63.8
2009,11,62.2
2009,11,59.9
2009,11,62.5
2009,11,61.8
2009,11,63.3
2009,11,60.5
2009,11,60
2009,11,62
2009,11,60.5
2009,11,59.4
2009,11,63
2009,11,61.8
2009,11,60.6
2009,11,62.2
2009,11,62.9
2009,11,59.3
2009,11,55.6
2009,11,61.2
2009,11,57.6
2009,11,63.3
2009,11,58.1
2009,12,45.6
2009,12,59.7
2009,12,59.4
2009,12,59.5
2009,12,58
2009,12,56.5
2009,12,60.3
2009,12,55.9
2009,12,50.6
2009,12,51.3
2009,12,62.3
2009,12,58.2
2009,12,40.6
2009,12,59.4
2009,12,55.6
2009,12,61.6
2009,12,48.1
2009,12,52.3
2009,12,57.7
2009,12,60.1
2009,12,61.3
2009,12,59.7
2009,12,52.6
2009,12,51.9
2009,12,53.2
2009,12,58.7
2009,12,55.9
2010,01,57.8
2010,01,45.4
2010,01,50.5
2010,01,56.3
2010,01,58.1
2010,01,41.8
2010,01,53
2010,01,58.9
2010,01,52.5
2010,01,50.5
2010,01,56.4
2010,01,55.9
2010,01,55.4
2010,01,39
2010,01,56.4
2010,01,57.7
2010,01,59.8
2010,01,54.9
2010,01,56.1
2010,01,55.6
2010,01,57.5
2010,01,47.4
2010,01,59.5
2010,01,48.7
2010,01,59.4
2010,01,55.5
2010,01,56.3
2010,01,45.1
2010,01,49
2010,02,43.1
2010,02,53.9
2010,02,44.2
2010,02,53.2
2010,02,48.8
2010,02,44.3
2010,02,57.3
2010,02,50.4
2010,02,59.8
2010,02,58.5
2010,02,56.3
2010,02,56.7
2010,02,58.9
2010,02,51.3
2010,02,43
2010,02,58.4
2010,02,56.9
2010,02,57.2
2010,02,51.2
2010,02,50.9
2010,02,48.7
2010,02,54.4
2010,02,55.9
2010,02,53.9
2010,02,59.3
2010,03,56
2010,03,54.9
2010,03,55.9
2010,03,58.2
2010,03,60.9
2010,03,56
2010,03,57.5
2010,03,59.1
2010,03,57.4
2010,03,51.9
2010,03,58
2010,03,55.9
2010,03,57.1
2010,03,55
2010,03,60.7
2010,03,55.7
2010,03,50.3
2010,03,57.6
2010,03,60.5
2010,03,53.7
2010,03,56.5
2010,03,57.3
2010,03,52.8
2010,03,46.7
2010,03,52.3
2010,03,55.6
2010,03,52.7
2010,03,56.1
2010,03,57.1
2010,03,55.2
2010,03,57.6
2010,04,62.4
2010,04,62.6
2010,04,55.7
2010,04,62.5
2010,04,57.5
2010,04,69.5
2010,04,63.5
2010,04,62.2
2010,04,60.7
2010,04,62.5
2010,04,62
2010,04,57.6
2010,04,61.3
2010,04,54.8
2010,04,64.3
2010,04,61.4
2010,04,67.2
2010,04,63
2010,04,64.5
2010,04,57.3
2010,04,57.4
2010,04,55.8
2010,04,58.6
2010,04,60.6
2010,04,61
2010,04,56.9
2010,04,60.2
2010,04,65.3
2010,04,60.2
2010,04,59.6
2010,05,73.9
2010,05,63.3
2010,05,56.5
2010,05,63.7
2010,05,63.2
2010,05,58.9
2010,05,58.1
2010,05,71.3
2010,05,63
2010,05,64.8
2010,05,64.1
2010,05,58.6
2010,05,55.9
2010,05,57.7
2010,05,69.1
2010,05,61.4
2010,05,59.2
2010,05,58.5
2010,05,57.3
2010,05,60.2
2010,05,59.1
2010,05,67.8
2010,05,67.1
2010,05,64.7
2010,05,61.3
2010,05,58.5
2010,05,58.7
2010,05,61.7
2010,05,59.9
2010,05,65.2
2010,06,64.4
2010,06,62
2010,06,62.2
2010,06,62.7
2010,06,65.8
2010,06,65.1
2010,06,63.4
2010,06,63.3
2010,06,62.2
2010,06,61.8
2010,06,61.5
2010,06,61.7
2010,06,64.7
2010,06,62.8
2010,06,64.2
2010,06,61.4
2010,06,63.3
2010,06,62.8
2010,06,64.1
2010,06,60.5
2010,06,62.6
2010,06,62.2
2010,06,63.1
2010,06,62.9
2010,06,63
2010,06,62.5
2010,06,62.2
2010,06,63.9
2010,06,61.9
2010,06,64.3
2010,07,65
2010,07,65.3
2010,07,65.1
2010,07,65.6
2010,07,65.6
2010,07,69.8
2010,07,74.5
2010,07,64.7
2010,07,65.6
2010,07,64.6
2010,07,72.1
2010,07,66.4
2010,07,66.8
2010,07,63.7
2010,07,65.2
2010,07,63.8
2010,07,65
2010,07,66.5
2010,07,65.4
2010,07,67.1
2010,07,65.5
2010,07,66.3
2010,07,65.9
2010,07,65.5
2010,07,64.5
2010,07,65
2010,07,65.9
2010,07,64.8
2010,07,65.3
2010,07,64.8
2010,07,65.3
2010,08,65.6
2010,08,65.5
2010,08,67
2010,08,69.4
2010,08,65
2010,08,64.3
2010,08,66.9
2010,08,65.4
2010,08,64.4
2010,08,65.1
2010,08,66.4
2010,08,63.6
2010,08,65.2
2010,08,63.3
2010,08,70.1
2010,08,65.9
2010,08,68.3
2010,08,67.8
2010,08,64.4
2010,08,65.1
2010,08,64.7
2010,08,63.7
2010,08,63.5
2010,08,67.9
2010,08,70.3
2010,08,65.8
2010,08,63.9
2010,08,66.6
2010,08,67.4
2010,08,65.4
2010,08,64.1
2010,09,66.6
2010,09,70.7
2010,09,66.3
2010,09,64.5
2010,09,66.7
2010,09,68.1
2010,09,71.2
2010,09,64.4
2010,09,65
2010,09,67.8
2010,09,64.5
2010,09,66.7
2010,09,67.8
2010,09,67.6
2010,09,68.3
2010,09,67.8
2010,09,67.6
2010,09,66.4
2010,09,68.4
2010,09,67.6
2010,09,63.7
2010,09,72.2
2010,09,67.3
2010,09,67.6
2010,09,67.6
2010,09,68.4
2010,09,64.7
2010,09,68.6
2010,09,66.4
2010,10,62
2010,10,63.3
2010,10,63.6
2010,10,63.7
2010,10,61.8
2010,10,64.2
2010,10,62.9
2010,10,65.6
2010,10,64.1
2010,10,65.2
2010,10,64.8
2010,10,61.6
2010,10,64.7
2010,10,65.7
2010,10,60.9
2010,10,61.7
2010,10,65.1
2010,10,65.5
2010,10,61
2010,10,62.1
2010,10,63
2010,10,65.8
2010,10,64.3
2010,10,65.3
2010,10,64.8
2010,10,62.5
2010,10,60.7
2010,11,61.2
2010,11,60.4
and if I run the following code
library(plot3D)
heisenberg <- read.csv(file="ABSOLUTE_FILE_LOCATION")
x <- heisenberg[[1]]
y <- heisenberg[[2]]
z <- heisenberg[[3]]
points3D(x, y, z, ticktype = "detailed")
I get
Thing is, i want the X axis to have only 2009 and 2010 instead of 2009.0, 2009.2, 2009.4 ...
In latticeExtra
adding a factor solved the problem.
Just like in the other question, if I add two entries to the data, I'm able to get the following result, which is closer than what I want but introduces wrong data.
So, I decided to add the factor in a similar way like how the other was solved, I get the following error
Error in Math.factor(diff(xlim)) : ‘abs’ not meaningful for factors
This error means I'm applying abs()
to an object type factor and it's not liking.
Considering the function factor()
allowed me to assign an order to the nominal variables, thus making them ordinal variables, if I convert the factor to integer is expected to not fix this and I would get the same result
library(plot3D)
heisenberg <- read.csv(file="ABSOLUTE_FILE_LOCATION")
x <- heisenberg[[1]]
x <- factor(x, levels = c(2009, 2010), ordered = TRUE)
x <- as.numeric(levels(x))[x]
y <- heisenberg[[2]]
z <- heisenberg[[3]]
points3D(x, y, z, ticktype = "detailed")
which was as expected.
So, considering such scenario, what then can I do to fix this?