Environment:
Im using TF.Keras (Tensorflow 1.14) on Google Colab, and my model architecture is MobileNet V2 1.00 224.
Problem:
I am trying (and failing) to attach a new layer and make a new output to an existing layer that is not the normal output of my Model. I.e make a branch earlier in MobileNet V2
I want this new branch to be for a regression output - but I dont want that output to serially connected off of the final embedding layer of MobileNet, but a much earlier stage (which one - im not sure, im experimenting). Basically a branch with its own output, and then the normal, pre-trained image net embedding out.
Grab MobileNet V2 as base_model:
base_model = tf.keras.applications.MobileNetV2(input_shape=(IMG_SIZE, IMG_SIZE, 3),
include_top=False,
weights='imagenet')
base_model.trainable = False
Make my layers from base_model and make my new outputs.
# get layers from mobilenet base layer
mobilenet_input = base_model.get_layer('input_1')
mobilenet_output = base_model.get_layer('out_relu')
# add our average pooling layer to our MobileNetV2 output like all of our other classifiers so we split our graph on the same nodes
out_global_pooling = tf.keras.layers.GlobalAveragePooling2D(name='embedding_pooling')(mobilenet_output.output)
out_global_pooling.trainable = False
# Our new branch and outputs for the branch
expanded_conv_depthwise_BN = base_model.get_layer('expanded_conv_depthwise_BN')
regression_dropout = tf.keras.layers.Dropout(0.5) (expanded_conv_depthwise_BN.output)
regression_global_pooling = tf.keras.layers.GlobalAveragePooling2D(name="regression_pooling")(regression_dropout)
new_regression_output = tf.keras.layers.Dense(num_labels, activation = 'sigmoid', name = "cinemanet_output") (regression_global_pooling)
This appears to be fine, and I can even make my model via the functional API:
model = tf.keras.Model(inputs=mobilenet_input.input, outputs=[out_global_pooling, new_regression_output])
My Training Code
My data set is a set of 30 floats (10 RGB duplets) I want to predict from an input image. My data set functions when training a 'sequence' model, but fails when I try to train this model.
ops.reset_default_graph()
tf.keras.backend.set_learning_phase(1) # 0 testing, 1 training mode
# preview contents of CSV to verify things are sane
import csv
import math
def lenopenreadlines(filename):
with open(filename) as f:
return len(f.readlines())
def csvheaderrow(filename):
with open(filename) as f:
reader = csv.reader(f)
return next(reader, None)
# !head {label_file}
NUM_IMAGES = ( lenopenreadlines(label_file) - 1) # remove header
COLUMN_NAMES = csvheaderrow(label_file)
LABEL_NAMES = COLUMN_NAMES[:]
LABEL_NAMES.remove("filepath")
ALL_LABELS.extend(LABEL_NAMES)
# make our data set
BATCH_SIZE = 256
NUM_EPOCHS = 50
FILE_PATH = ["filepath"]
LABELS_TO_PRINT = ' '.join(LABEL_NAMES)
print("Label contains: " + str(NUM_IMAGES) + " images")
print("Label Are: " + LABELS_TO_PRINT)
print("Creating Data Set From " + label_file)
csv_dataset = get_dataset(label_file, BATCH_SIZE, NUM_EPOCHS, COLUMN_NAMES)
#make a new data set from our csv by mapping every value to the above function
split_dataset = csv_dataset.map(split_csv_to_path_and_labels)
# make a new datas set that loads our images from the first path
image_and_labels_ds = split_dataset.map(load_and_preprocess_image_batch, num_parallel_calls=AUTOTUNE)
# update our image floating point range to match -1, 1
ds = image_and_labels_ds.map(change_range)
print(image_and_labels_ds)
model = build_model(LABEL_NAMES, use_masked_loss)
#split the final data set into train / validation splits to use for our model.
DATASET_SIZE = NUM_IMAGES
ds = ds.repeat()
steps_per_epoch = int(math.floor(DATASET_SIZE/BATCH_SIZE))
history = model.fit(ds, epochs=NUM_EPOCHS, steps_per_epoch=steps_per_epoch, callbacks=[TensorBoardColabCallback(tbc)])
print(history)
# results = model.evaluate(test_dataset)
# print('test loss, test acc:', results)
export_model(model, model_name, LABEL_NAMES, date)
ValueError: Error when checking model target:
the list of Numpy arrays that you are passing to your model is not the size the model expected.
Expected to see 2 array(s), but instead got the following list of 1 arrays:
[<tf.Tensor 'IteratorGetNext:1' shape=(?, 30) dtype=float32>]
If I instead use a Sequence and naively try to train my regression task against final output of mobile net (rather than the branch) - training works fine (although I get poor results).
My Model summary appears to tell me things are wired as I expect. My dropout is connected to expanded_conv_depthwise_BN. My regression pooling is connected to my drop out and my output layer appears in the summary connected to my regressing pooling
Model: "model"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_1 (InputLayer) [(None, 224, 224, 3) 0
__________________________________________________________________________________________________
Conv1_pad (ZeroPadding2D) (None, 225, 225, 3) 0 input_1[0][0]
__________________________________________________________________________________________________
Conv1 (Conv2D) (None, 112, 112, 32) 864 Conv1_pad[0][0]
__________________________________________________________________________________________________
bn_Conv1 (BatchNormalization) (None, 112, 112, 32) 128 Conv1[0][0]
__________________________________________________________________________________________________
Conv1_relu (ReLU) (None, 112, 112, 32) 0 bn_Conv1[0][0]
__________________________________________________________________________________________________
expanded_conv_depthwise (Depthw (None, 112, 112, 32) 288 Conv1_relu[0][0]
__________________________________________________________________________________________________
expanded_conv_depthwise_BN (Bat (None, 112, 112, 32) 128 expanded_conv_depthwise[0][0]
__________________________________________________________________________________________________
expanded_conv_depthwise_relu (R (None, 112, 112, 32) 0 expanded_conv_depthwise_BN[0][0]
__________________________________________________________________________________________________
expanded_conv_project (Conv2D) (None, 112, 112, 16) 512 expanded_conv_depthwise_relu[0][0
__________________________________________________________________________________________
< snip for brevity >
________
block_16_project (Conv2D) (None, 7, 7, 320) 307200 block_16_depthwise_relu[0][0]
__________________________________________________________________________________________________
block_16_project_BN (BatchNorma (None, 7, 7, 320) 1280 block_16_project[0][0]
__________________________________________________________________________________________________
Conv_1 (Conv2D) (None, 7, 7, 1280) 409600 block_16_project_BN[0][0]
__________________________________________________________________________________________________
Conv_1_bn (BatchNormalization) (None, 7, 7, 1280) 5120 Conv_1[0][0]
__________________________________________________________________________________________________
dropout (Dropout) (None, 112, 112, 32) 0 expanded_conv_depthwise_BN[0][0]
__________________________________________________________________________________________________
out_relu (ReLU) (None, 7, 7, 1280) 0 Conv_1_bn[0][0]
__________________________________________________________________________________________________
regression_pooling (GlobalAvera (None, 32) 0 dropout[0][0]
__________________________________________________________________________________________________
embedding_pooling (GlobalAverag (None, 1280) 0 out_relu[0][0]
__________________________________________________________________________________________________
cinemanet_output (Dense) (None, 30) 990 regression_pooling[0][0]
==================================================================================================
Total params: 2,258,974
Trainable params: 990
Non-trainable params: 2,257,984