I am trying to use Eigen to efficiently assemble a Stiffness matrix for non-linear finite element computations.
From my finite element discretization I can exactly extract my sparsity pattern. Therefore I can just use:
mat.reserve(nnz);
mat.setFromTriplets(TripletList.begin(), TripletList.end());
as proposed in http://eigen.tuxfamily.org/dox/group__SparseQuickRefPage.html.
My questions that arise here are:
Due to the non-linear nature I have to refill my matrix very often. Therefore should I store than again all contribution in a triplet and reuse
mat.setFromTriplets(...)
again and again?If I reuse
mat.setFromTriplets(...)
can I somehow exploit the fact that I evaluated my element matrices for the assembly always in the same order and therefore my indices in the triplet never change but only the value. Therefore the "search in memory" can be circumvented since I can maybe store the place where to put it in a new Array?If
mat.coeffRef(i,j)
is faster can I maybe exploit the aforementioned fact?One extra question: (Lower priority) Is it possible to store and assemble efficiently 3 matrices with the same sparsity pattern, i.e. if I have to do it in a loop? For example a matrix wrapper where i have one SparseMatrix to get the matrices as M1=mat[0], M2=mat[1], M3=mat[2], where mat[i] return the first matrix and M1,M2 and M3 are e.g.
SparseMatrix<double> M1(1000,1000)
.-
The general setup is the following (for question 1.-3. only M1 appears):
std::vector< Eigen::Triplet<double> > tripletListA; // triplets differ only in the values and not in the indices
std::vector< Eigen::Triplet<double> > tripletListB;
std::vector< Eigen::Triplet<double> > tripletListC;
SparseMatrix<double> M1(1000,1000);
SparseMatrix<double> M2(1000,1000);
SparseMatrix<double> M3(1000,1000);
//Reserve space in triplets
tripletListA.reserve(nnz);
tripletListB.reserve(nnz);
tripletListC.reserve(nnz);
//Reserve space in matrices
M1.reserve(nnz);
M2.reserve(nnz);
M3.reserve(nnz);
//fill triplet list with zeros
M1.setFromTriplets(tripletListA.begin(), tripletListA.end());
M2.setFromTriplets(tripletListB.begin(), tripletListB.end());
M3.setFromTriplets(tripletListC.begin(), tripletListC.end());
for (int i=0; i<1000; i++) {
//Fill triplets
M1.setFromTriplets(tripletListA.begin(), tripletListA.end()); //or use coeffRef?
M2.setFromTriplets(tripletListB.begin(), tripletListB.end());
M3.setFromTriplets(tripletListC.begin(), tripletListC.end());
//solve
//update
}
Thank you and regards, Alex
UPDATE:
Thank you for your answers. Initially the order of my access to the nonzeros is quite arbitrary. But since i'm interested in an iterative scheme i think about documenting this random sorting and construct an operator which takes care of this. This operator can be constructed (at least in my mind) from the initially constructed triplet.
SparseMatrix<double> mat(rows,cols);
std::vector<double> valuevector(nnz);
//Initially construction
std::vector< Eigen::Triplet<double> > tripletList;
//naive fill of tripletList
//Sorting of entries and identifying double entries in tripletList from col and row values
//generating from this information operator P
for (int i=0; i<1000; i++)
{
//naive refill of tripletList
valuevector= P*tripletList.value(); //constructing vector in efficient ordering from values of triplets (tripletList.value() call does not makes since for std::vector but i hope it is clear what i have in mind
for (int k=0; k<mat.outerSize(); ++k)
for (SparseMatrix<double>::InnerIterator it(mat,k); it; ++it)
it.valueRef() =valuevector(it);
}
I think about the operator P
just as a matrix with ones and zeros at the appropiate places.
The question remains if this is even a more efficient procedure?
UPDATE-2: Benchmark:
I tried to construct my ideas in a code snippet. I first generate a random triplet list. This list is constructed to get a sparsity of 95% and additionally some values in the list are duplicated to mimic dubplicates in the triplet list whic hwrite on the same position in the sparse matrix. These values are then inserted based on different concepts. The first one is the setfromtriplet
approach and the second and third tries to exploit the known structure.
The second and third approach documents the ordering of the triplet list. This information is then exploited to directly write the values in the pure mat1.coeffs()
vector.
#include <iostream>
#include <Eigen/Sparse>
#include <random>
#include <fstream>
#include <chrono>
using namespace std::chrono;
using namespace Eigen;
using namespace std;
typedef Eigen::Triplet<double> T;
void findDuplicates(vector<pair<int, int> > &dummypair, Ref<VectorXi> multiplicity) {
// Iterate over the vector and store the frequency of each element in map
int pairCount = 0;
pair<int, int> currentPair;
for (int i = 0; i < multiplicity.size(); ++i) {
currentPair = dummypair[pairCount];
while (currentPair == dummypair[pairCount + multiplicity[i]]) {
multiplicity[i]++;
}
pairCount += multiplicity[i];
}
}
typedef Matrix<duration<double, std::milli>, Dynamic, Dynamic> MatrixXtime;
int main() {
//init random generators
std::default_random_engine gen;
std::uniform_real_distribution<double> dist(0.0, 1.0);
int sizesForTest = 5;
int measures = 6;
MatrixXtime timeArray(sizesForTest, measures);
cout << "TripletTime NestetTime LNestedTime " << endl;
for (int m = 0; m < sizesForTest; ++m) {
int rows = pow(10, m + 1);
int cols = rows;
std::uniform_int_distribution<int> distentryrow(0, rows - 1);
std::uniform_int_distribution<int> distentrycol(0, cols - 1);
std::vector<T> tripletList;
SparseMatrix<double> mat1(rows, cols);
// SparseMatrix<double> mat2(rows,cols);
// SparseMatrix<double> mat3(rows,cols);
//generate sparsity pattern of matrix with 10% fill-in
tripletList.emplace_back(3, 0, 15);
for (int i = 0; i < rows; ++i)
for (int j = 0; j < cols; ++j) {
auto value = dist(gen); //generate random number
auto value2 = dist(gen); //generate random number
auto value3 = dist(gen); //generate random number
if (value < 0.05) {
auto rowindex = distentryrow(gen);
auto colindex = distentrycol(gen);
tripletList.emplace_back(rowindex, colindex, value); //if larger than treshold, insert it
//dublicate every third entry to mimic entries which appear more then once
if (value2 < 0.3333333333333333333333)
tripletList.emplace_back(rowindex, colindex, value);
//triple every forth entry to mimic entries which appear more then once
if (value3 < 0.25)
tripletList.emplace_back(rowindex, colindex, value);
}
}
tripletList.emplace_back(3, 0, 9);
int numberOfValues = tripletList.size();
//initially set all matrices from triplet to allocate space and sparsity pattern
mat1.setFromTriplets(tripletList.begin(), tripletList.end());
// mat2.setFromTriplets(tripletList.begin(), tripletList.end());
// mat3.setFromTriplets(tripletList.begin(), tripletList.end());
int nnz = mat1.nonZeros();
//reset all entries back to zero to fill in later
mat1.coeffs().setZero();
// mat2.coeffs().setZero();
// mat3.coeffs().setZero();
//document sorting of entries for repetative insertion
VectorXi internalIndex(numberOfValues);
vector<pair<int, int> > dummypair(numberOfValues);
VectorXd valuelist(numberOfValues);
for (int l = 0; l < numberOfValues; ++l) {
valuelist(l) = tripletList[l].value();
}
//init internalindex and dummy pair
internalIndex = Eigen::VectorXi::LinSpaced(numberOfValues, 0.0, numberOfValues - 1);
for (int i = 0; i < numberOfValues; ++i) {
dummypair[i].first = tripletList[i].col();
dummypair[i].second = tripletList[i].row();
}
auto start = high_resolution_clock::now();
// sort the vector internalIndex based on the dummypair
sort(internalIndex.begin(), internalIndex.end(), [&](int i, int j) {
return dummypair[i].first < dummypair[j].first ||
(dummypair[i].first == dummypair[j].first && dummypair[i].second < dummypair[j].second);
});
auto stop = high_resolution_clock::now();
timeArray(m, 3) = (stop - start) / 1000;
start = high_resolution_clock::now();
sort(dummypair.begin(), dummypair.end());
stop = high_resolution_clock::now();
timeArray(m, 4) = (stop - start) / 1000;
start = high_resolution_clock::now();
VectorXi dublicatecount(nnz);
dublicatecount.setOnes();
findDuplicates(dummypair, dublicatecount);
stop = high_resolution_clock::now();
timeArray(m, 5) = (stop - start) / 1000;
dummypair.clear();
//calculate vector containing all indices of triplet
//therefore vector[k] is the vectorXi containing the entries of triples which should be written at dof k
int indextriplet = 0;
int multiplicity = 0;
vector<VectorXi> listofentires(mat1.nonZeros());
for (int k = 0; k < mat1.nonZeros(); ++k) {
multiplicity = dublicatecount[k];
listofentires[k] = internalIndex.segment(indextriplet, multiplicity);
indextriplet += multiplicity;
}
//========================================
//Here the nonlinear analysis should start and everything beforehand is prepocessing
//Test1 from triplets
start = high_resolution_clock::now();
mat1.setFromTriplets(tripletList.begin(), tripletList.end());
stop = high_resolution_clock::now();
timeArray(m, 0) = (stop - start) / 1000;
mat1.coeffs().setZero();
//Test2 use internalIndex but calculate listofentires on the fly
indextriplet = 0;
start = high_resolution_clock::now();
for (int k = 0; k < mat1.nonZeros(); ++k) {
multiplicity = dublicatecount[k];
mat1.coeffs()[k] += valuelist(internalIndex.segment(indextriplet, multiplicity)).sum();
indextriplet += multiplicity;
}
stop = high_resolution_clock::now();
timeArray(m, 1) = (stop - start) / 1000;
mat1.coeffs().setZero();
//Test3 directly use listofentires
start = high_resolution_clock::now();
for (int k = 0; k < mat1.nonZeros(); ++k)
mat1.coeffs()[k] += valuelist(listofentires[k]).sum();
stop = high_resolution_clock::now();
timeArray(m, 2) = (stop - start) / 1000;
std::ofstream file("test.txt");
if (file.is_open()) {
file << mat1 << '\n';
}
cout << "Size: " << rows << ": ";
for (int n = 0; n < measures; ++n)
cout << timeArray(m, n).count() << " ";
cout << endl;
}
return 0;
}
If i run this example on my i5-6600K 3.5Ghz and 16GB ram i end up with the following results. which are the times in seconds.
Size Triplet Nested LessNested Sort_intIndex Sort_dum_pair findDuplica
10 1e-06 1e-06 2e-06 1e-06 1e-06 1e-06
100 2.8e-05 4e-06 1.4e-05 5e-05 4.2e-05 1e-05
1000 0.003 0.000416 0.001489 0.01012 0.00627 0.000635
10000 0.426 0.093911 0.48912 1.5389 0.780676 0.061881
100000 337.799 99.0801 37.3656 292.397 87.4488 0.79996
The first three columns denote the calculation time of the different approaches and column 4 to 6 denote the times for different preprocessing steps.
For the size of 100000 rowsand coloumns my Ram gets full relatively fast and therefore the last table entry should be taken with care. Here the fastest method changes from 2 to three.
My questions here are is this approach going in the correct direction to improve the efficiency? Is this a complete wrong direction because for example for the case of a size of 10000 an assemble time of 0.48s seems a bit high?
Additionally the preprocessing steps are getting expensive very fast and is there a better way to construct the ordering of the matrix? Finally as last question is the benchmarking done in the correct way?
Thanks for your time, Alex