I've just trained an LSTM language model using pytorch. The main body of the class is this:
class LM(nn.Module):
def __init__(self, n_vocab,
seq_size,
embedding_size,
lstm_size,
pretrained_embed):
super(LM, self).__init__()
self.seq_size = seq_size
self.lstm_size = lstm_size
self.embedding = nn.Embedding.from_pretrained(pretrained_embed, freeze = True)
self.lstm = nn.LSTM(embedding_size,
lstm_size,
batch_first=True)
self.fc = nn.Linear(lstm_size, n_vocab)
def forward(self, x, prev_state):
embed = self.embedding(x)
output, state = self.lstm(embed, prev_state)
logits = self.fc(output)
return logits, state
Now I want to write a function which calculates how good a sentence is, based on the trained language model (some score like perplexity, etc.).
I'm a bit confused and I don't know how should I calculate this.
A similar sample would be of greate use.