I'm using RLLib's PPOTrainer with a custom environment, I execute trainer.train()
two times, the first one completes successfully, but when I execute it for the second time it crashed with an error:
lib/python3.7/site-packages/tensorflow_core/python/client/session.py", line 1384, in _do_call (pid=15248) raise type(e)(node_def, op, message) (pid=15248)
tensorflow.python.framework.errors_impl.InvalidArgumentError:
Received a label value of 5 which is outside the valid range of [0, 5). >Label values: 5 5
(pid=15248) [[node default_policy/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits (defined at /tensorflow_core/python/framework/ops.py:1751) ]]
Here's my code:
main.py
ModelCatalog.register_custom_preprocessor("tree_obs_prep", TreeObsPreprocessor)
ray.init()
trainer = PPOTrainer(env=MyEnv, config={
"train_batch_size": 4000,
"model": {
"custom_preprocessor": "tree_obs_prep"
}
})
for i in range(2):
print(trainer.train())
MyEnv.py
class MyEnv(rllib.env.MultiAgentEnv):
def __init__(self, env_config):
self.n_agents = 2
self.env = *CREATES ENV*
self.action_space = gym.spaces.Discrete(5)
self.observation_space = np.zeros((1, 12))
def reset(self):
self.agents_done = []
obs = self.env.reset()
return obs[0]
def step(self, action_dict):
obs, rewards, dones, infos = self.env.step(action_dict)
d = dict()
r = dict()
o = dict()
i = dict()
for i_agent in range(len(self.env.agents)):
if i_agent not in self.agents_done:
o[i_agent] = obs[i_agent]
r[i_agent] = rewards[i_agent]
d[i_agent] = dones[i_agent]
i[i_agent] = infos[i)agent]
d['__all__'] = dones['__all__']
for agent, done in dones.items():
if done and agent != '__all__':
self.agents_done.append(agent)
return o, r, d, i
I have no idea about what's the problem, any suggestion? What does this error mean?