I have 2 arrays, one of shape (4, 2, 2)
, another of shape (4, 2).
A = np.random.rand(4, 2, 2)
B = np.random.rand(4, 2)
So, for every 0<= i <= 3
, I want to have np.dot(A[i, :, :], B[i, :])
.
How to do it without using a for-loop?
I have 2 arrays, one of shape (4, 2, 2)
, another of shape (4, 2).
A = np.random.rand(4, 2, 2)
B = np.random.rand(4, 2)
So, for every 0<= i <= 3
, I want to have np.dot(A[i, :, :], B[i, :])
.
How to do it without using a for-loop?
(A @ B[...,np.newaxis])[...,0]
should work (synactic sugar for np.matmul(A, B[...,np.newaxis])[...,0]
).
Per the documentation for matmul
:
If either argument is N-D, N > 2, it is treated as a stack of matrices residing in the last two indexes.
You can also use Einstein summation np.einsum("ijk,ik->ij", A, B)
, although on my machine this is apparently slower than broadcasting matmul:
import timeit
import numpy as np
A = np.random.rand(4, 2, 2)
B = np.random.rand(4, 2)
def broadcast_matmul():
return (A @ B[..., np.newaxis])[..., 0]
def list_map():
return np.array(list(map(np.dot, A, B)))
def einsum():
return np.einsum("ijk,ik->ij", A, B)
print(timeit.timeit(broadcast_matmul))
print(timeit.timeit(list_map))
print(timeit.timeit(einsum))
# Results on my machine:
# 1.870921753
# 6.705698656999999
# 2.765732645
Here's how this could be done using np.einsum
:
np.einsum('ijk,ik->ij', A, B)
array([[0.39437083, 0.45360039],
[0.75211742, 0.40669922],
[0.18131254, 0.19473085],
[0.2919673 , 0.10398859]])
Quick check using the first elements that are multiplied:
np.dot(A[0], B[0])
# array([0.39437083, 0.45360039])