I had a similar problem to OP, I needed to find all columns - including nested columns - that match a LIKE clause.
I wrote a post about it here https://medium.com/helmes-people/how-to-view-all-databases-tables-and-columns-in-databricks-9683b12fee10
But you can find the full code below.
The benefit of this solution, in comparison with the previous answers, is that it works in case you need to search columns with LIKE '%%', as written by OP. Also, it allows you to search for name in nested fields. Finally, it creates a SQL like view, similar to INFORMATION_SCHEMA views.
from pyspark.sql.types import StructType
# get field name from schema (recursive for getting nested values)
def get_schema_field_name(field, parent=None):
if type(field.dataType) == StructType:
if parent == None:
prt = field.name
else:
prt = parent+"."+field.name # using dot notation
res = []
for i in field.dataType.fields:
res.append(get_schema_field_name(i, prt))
return res
else:
if parent==None:
res = field.name
else:
res = parent+"."+field.name
return res
# flatten list, from https://stackoverflow.com/a/12472564/4920394
def flatten(S):
if S == []:
return S
if isinstance(S[0], list):
return flatten(S[0]) + flatten(S[1:])
return S[:1] + flatten(S[1:])
# list of databases
db_list = [x[0] for x in spark.sql("SHOW DATABASES").rdd.collect()]
for i in db_list:
spark.sql("SHOW TABLES IN {}".format(i)).createOrReplaceTempView(str(i)+"TablesList")
# create a query for fetching all tables from all databases
union_string = "SELECT database, tableName FROM "
for idx, item in enumerate(db_list):
if idx == 0:
union_string += str(item)+"TablesList WHERE isTemporary = 'false'"
else:
union_string += " UNION ALL SELECT database, tableName FROM {}".format(str(item)+"TablesList WHERE isTemporary = 'false'")
spark.sql(union_string).createOrReplaceTempView("allTables")
# full list = schema, table, column
full_list = []
for i in spark.sql("SELECT * FROM allTables").collect():
table_name = i[0]+"."+i[1]
table_schema = spark.sql("SELECT * FROM {}".format(table_name))
column_list = []
for j in table_schema.schema:
column_list.append(get_schema_field_name(j))
column_list = flatten(column_list)
for k in column_list:
full_list.append([i[0],i[1],k])
spark.createDataFrame(full_list, schema = ['database', 'tableName', 'columnName']).createOrReplaceTempView("allColumns")```