There are several questions regarding message enrichment using external data, and the recommendation is almost always the same: ingest external data using Kafka Connect and then join the records using state stores. Although it fits in most cases, there are several other use cases in which it does not, such as IP to location and user agent detection, to name a few.
Enriching a message with an IP-based location usually requires a lookup by a range of IPs, but currently, there is no built-in state store that provides such capability. For user agent analysis, if you rely on a third-party service, you have no choices other than performing external calls.
We spend some time thinking about it, and we came up with an idea of implementing a custom state store on top of a database that supports range queries, like Postgres. We could also abstract an external HTTP or GRPC service behind a state store, but we're not sure if it is the right way.
In that sense, what is the recommended approach when you cannot avoid querying an external service during the stream processing, but you still must guarantee fault tolerance? What happens when an error occurs while the state store is retrieving data (a request fails, for instance)? Do Kafka Streams retry processing the message?