I bet this question has been answered a number of times but I am struggling to find a definitive solution.
I need to delete dataframe rows based on a greater or equal condition. Because of float64 type I am not able to satisfy the "equal" part of the condition. Splitting the condition into two seems cumbersome and not very pandorable. Can someone help me with finding solution?
Thanks.
Dataframe:
Sg Sw temp_S Krg Krw Pc
0 0.00 1.00 -5.263158e-02 0.000000 0.650000 0.000000
1 0.05 0.95 -4.382459e-17 0.000000 0.650000 0.000000
2 0.10 0.90 5.263158e-02 0.000000 0.593548 0.095790
3 0.15 0.85 1.052632e-01 0.000000 0.537097 0.107775
4 0.20 0.80 1.578947e-01 0.000000 0.480645 0.122121
5 0.25 0.75 2.105263e-01 0.000000 0.424194 0.139496
6 0.30 0.70 2.631579e-01 0.000000 0.367742 0.160837
7 0.35 0.65 3.157895e-01 0.000000 0.311290 0.187397
8 0.36 0.64 3.263158e-01 0.000000 0.300000 0.193483
9 0.40 0.60 3.684211e-01 0.014167 0.230400 0.221009
Slicing:
print(object.sc_df[object.sc_df['Sg'].values > 0.05])
Output:
Sg Sw temp_S Krg Krw Pc
2 0.10 0.90 0.052632 0.000000 0.593548 0.095790
3 0.15 0.85 0.105263 0.000000 0.537097 0.107775
4 0.20 0.80 0.157895 0.000000 0.480645 0.122121
5 0.25 0.75 0.210526 0.000000 0.424194 0.139496
6 0.30 0.70 0.263158 0.000000 0.367742 0.160837
7 0.35 0.65 0.315789 0.000000 0.311290 0.187397
8 0.36 0.64 0.326316 0.000000 0.300000 0.193483
9 0.40 0.60 0.368421 0.014167 0.230400 0.221009
As you can see, line 1 is missing. What would be the best way satisfying "equal" condition?