Consider a csv file:
customer consumption datetime
1 0.970 2013-06-29 19:00:00
1 0.625 2013-06-29 19:30:00
1 0.153 2013-06-29 20:00:00
1 0.484 2013-06-29 20:30:00
1 0.489 2013-06-29 21:00:00
1 0.970 2013-06-30 19:00:00
1 0.625 2013-06-30 19:30:00
1 0.153 2013-06-30 20:00:00
1 0.484 2013-06-30 20:30:00
1 0.489 2013-06-30 21:00:00
2 0.461 2013-06-29 19:00:00
2 0.894 2013-06-29 19:30:00
2 0.848 2013-06-29 20:00:00
2 0.977 2013-06-29 20:30:00
2 0.189 2013-06-29 21:00:00
2 0.461 2013-06-30 19:00:00
2 0.894 2013-06-30 19:30:00
2 0.848 2013-06-30 20:00:00
2 0.977 2013-06-30 20:30:00
2 0.189 2013-06-30 21:00:00
I want to aggregate(mean) consumption for each customer for each day. I can easily aggregate for each day using:
df.resample('D').mean()
But that aggregates data for all customer, instead I want to aggregate consumption for each customer on daily basis. I went through most of the articles posted (here) but they all aggregate based on date only.