I am trying to use CTC_Loss function in fashion_mnist dataset but I am not able to understand the parameters like y_true, y_pred, input_length and label_lengths in fashion_mnist dataset.
So far I tried the below code, but getting errors
from __future__ import absolute_import, division, print_function, unicode_literals
# TensorFlow and tf.keras
import tensorflow as tf
from tensorflow import keras
# Helper libraries
import numpy as np
import matplotlib.pyplot as plt
from keras import backend as K
print(tf.__version__)
fashion_mnist = keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
train_images = train_images / 255.0
test_images = test_images / 255.0
model = keras.Sequential([
keras.layers.Flatten(input_shape=(28, 28)),
keras.layers.Dense(128, activation='relu'),
keras.layers.Dense(10, activation='softmax')
])
model.summary()
def ctc_loss(y_true, y_pred):
return K.ctc_batch_cost(y_true, y_pred, input_length, label_length)
model.compile(optimizer='adam',
loss=ctc_loss,
metrics=['accuracy'])
def validate(model, test_images, test_labels):
test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
return (test_acc)
def train(model):
epoch = 0
earlystop = 5
noImprovementSince = 0
bestCharErrorRate = float('inf')
while True:
epoch += 1
print('Epoch:', epoch)
# train
print('Train NN')
model.fit(train_images, train_labels, epochs=epoch)
# validate
charErrorRate = validate(model, test_images, test_labels)
# if best validation accuracy so far, save model parameters
if charErrorRate < bestCharErrorRate:
print('Character error rate improved, save model')
bestCharErrorRate = charErrorRate
noImprovementSince = 0
# model.save()
# open(FilePaths.fnAccuracy, 'w').write(
# 'Validation character error rate of saved model: %f%%' % (charErrorRate * 100.0))
else:
print('Character error rate not improved')
noImprovementSince += 1
# stop training if no more improvement in the last x epochs
if noImprovementSince >= earlystop:
print('No more improvement since %d epochs. Training stopped.' % earlystop)
break
return model.save('/models')
train(model)
Here I can't understand the y_true, input_length and label_length.
I was trying this link