The post is very confusing:
- Calculating angles from 1 to 30 radians in 10 steps doesn't make much sense. Sensible values for radians are from -2π to +2π, outside that range trigonomic functions quickly lose precision. Also, making steps that are much larger than a few degrees is very unusual. To get from 1 to 30 radians in 10 steps, steps of almost 180° are taken.
- Some testing of the output reveals that the steps are smaller: from 1 to 10 radians in 10 steps. This is still 57° per step, and goes almost 2 times around the circle.
Reverse engineering the output with atan2(y,x)
reveals that the desired output is less precise than the calculation with doubles. So, probably the calculations used 32 bit floats. To test this, one has to be very careful. Internally, floats can get passed as doubles, and the processor works with 80 bits of precision for arithmetic calculations. (Note that on most machines long double
has the same precision as double
.)
Now, if you call sin
on a float, the compiler often calls the double version of sin
. To force the float
version, one can try to explicitly call them, they have an f
appended to the function name: sinf
and cosf
.
Testing the following with MicroSoft Visual C, 2017 community edition:
#include <math.h>
void test_sinf()
{
float radio = 100;
float angulo1 = 1;
float angulof = 10;
float angulo = (angulof - angulo1) / 9;
float x, y;
int n;
for (n = 0; n < 10; ++n) {
x = radio * cosf(angulo1 + (angulo*n));
y = radio * sinf(angulo1 + (angulo*n));
printf("%.6lf,%.6lf\n", x, y);
}
}
outputs:
54.030228, 84.147095
-41.614685, 90.929741
-98.999252, 14.112000
-65.364365, -75.680252
28.366220, -95.892426
96.017029, -27.941549
75.390228, 65.698662
-14.550003, 98.935822
-91.113022, 41.211849
-83.907150, -54.402115
This leaves the last digit of only 4 of the numbers with a difference. Which suggests a slightly different library/compiler has been used. As the angles and the radius are all integer numbers which can be represented exact with floats, they are an unprobable cause of the differences.
edit: Testing out the suggestion of @gnasher729 is seems he's right. Running the code with the double precision sin
and cos
, and convering the result to float before printing, gives exactly the "desired" numbers. This probably gives the same results on most compilers for this test case. (32 bit floats are an IEEE standard, and 64 bit trigonomic functions have enough precision to make implementation details disappear after rounding.)
#include <math.h>
void test_sin_converted_to_float()
{
float radio = 100;
float angulo1 = 1;
float angulof = 10;
float angulo = (angulof - angulo1) / 9;
float x, y;
for (int n = 0; n <= 9; ++n) {
x = radio * cos(angulo1 + (angulo*n));
y = radio * sin(angulo1 + (angulo*n));
printf("%.6lf, %.6lf\n", x, y);
}
}