You can do reasonably well while keeping the recursion (arithmetics on BigInteger
are pretty unpleasant though):
public class Binomials {
private HashMap<Pair<BigInteger, BigInteger>, BigInteger> map = new HashMap();
public BigInteger binomial(int n, int k) {
return binomial(new Pair(valueOf(n), valueOf(k)));
}
public BigInteger binomial(Pair<BigInteger, BigInteger> x) {
if(x.getValue().equals(ZERO) || x.getKey().equals(x.getValue())) {
return ONE;
}
return map.computeIfAbsent(x, nk -> binomial(doP1(nk)).add(binomial(doP2(nk))));
}
private Pair<BigInteger, BigInteger> doP1(Pair<BigInteger, BigInteger> nk) {
return new Pair(nk.getKey().subtract(ONE), nk.getValue());
}
private Pair<BigInteger, BigInteger> doP2(Pair<BigInteger, BigInteger> nk) {
return new Pair(nk.getKey().subtract(ONE), nk.getValue().subtract(ONE));
}
public static void main(String[] args) {
System.out.println(new Binomials().binomial(8, 4)); // 70
}
}
In fact all the Pair
and BigInteger
shenanigans are noisy enough to obscure what is going on so here is the same approach in Kotlin:
fun BigInteger.plus(other: BigInteger): BigInteger = this.add(other)
fun BigInteger.minus(other: BigInteger): BigInteger = this.subtract(other)
object Binomial {
val map = mutableMapOf<Pair<BigInteger, BigInteger>, BigInteger>()
fun binomial(n: Int, k: Int): BigInteger =
binomial(Pair(n.toBigInteger(), k.toBigInteger()))
fun binomial(x: Pair<BigInteger, BigInteger>): BigInteger {
val (n, k) = x
if (k == ZERO || n == k) {
return ONE
}
return map.getOrPut(x) { binomial(Pair(n - ONE, k)) + binomial(Pair(n - ONE, k - ONE)) }
}
}
fun main() {
println(binomial(8, 4)) // 70
}