I'm looking for the best way to clean up this data into something that I can input as a pandas dataframe for further analysis. The first few lines of the data are currently structured as follows (there are several thousand lines of data):
4 0 1. 1 37.0 10.000 0 3 18. 40.0 7 4 0. 0. 1.
5 0 1. 0 27.0 4.000 0 4 14. 20.0 6 4 0. 0. 1.
11 0 1. 0 32.0 15.000 1 1 12. 12.5 1 4 0. 0. 1.
16 0 1. 1 57.0 15.000 1 5 18. 12.5 6 5 0. 0. 1.
23 0 1. 1 22.0 0.750 0 2 17. 7.5 6 3 0. 0. 1.
29 0 1. 0 32.0 1.500 0 2 17. 7.5 5 5 0. 0. 1.
44 0 1. 0 22.0 0.750 0 2 12. 12.5 1 3 0. 0. 1.
45 0 1. 1 57.0 15.000 1 2 14. 20.0 4 4 0. 0. 1.
47 0 1. 0 32.0 15.000 1 4 16. 20.0 1 2 0. 0. 1.
49 0 1. 1 22.0 1.500 0 4 14. 12.5 4 5 0. 0. 1.
50 0 1. 1 37.0 15.000 1 2 20. 20.0 7 2 0. 0. 1.
55 0 1. 1 27.0 4.000 1 4 18. 12.5 6 4 0. 0. 1.
The columns are as follows:
identifier, not used, constant, z1, z2, z3, z4, z5, z6, not used, z7, z8, yPT, not used, not used
So not every column in the data is significant however that is something I can easily take care of if this can be converted into a pandas dataframe.