I am trying to do a linear buckling analysis (sol 105) with Nastran on a cylindrical shell structure. My understanding is that the compressive load that I apply to the structure must be multiplied by the resulting eigenvalue to get the buckling load. This gives me results that I expect.
However, now I apply a single perturbation load (SPL), a small transverse force acting midway along the cylinder on a single grid point. My understanding is that the magnitude of the SPL stays the way it is, (Unlike the compressive load where I multiply it with the eigenvalue to obtain buckling load.) The results I obtain are not what I expect, as the buckling load should not reduce so much as the SPL increases, according to the theory on this topic.
I am wondering if anyone knows what I am doing wrong. I feel like my mistake is probably very easy, but I haven't been able to solve it yet. Here is some more information on my implementation:
- Axial compressive force spread over top grid points of cylinder.
- Both SPL (the transverse point load) and axial loads are added to the static analysis subcase. Then the buckling subcase uses the static subcase for its analysis. This is how I understand it should be done.
boundary conditions:
- SPC1 restraining 123 (xyz) directions at bottom grid points.
- SPC1 restraining 12 (xy) directions at top grid points.