TASK 1:
I have table like this:
+----------+------------+----------+------------+----------+------------+-------+
| a_name_0 | id_qname_0 | a_name_1 | id_qname_1 | a_name_2 | id_qname_2 | count |
+----------+------------+----------+------------+----------+------------+-------+
| country | 1 | NAN | NAN | NAN | NAN | 100 |
+----------+------------+----------+------------+----------+------------+-------+
| region | 2 | city | 8 | NAN | NAN | 20 |
+----------+------------+----------+------------+----------+------------+-------+
| region | 2 | city | 9 | NAN | NAN | 80 |
+----------+------------+----------+------------+----------+------------+-------+
| region | 3 | age | 4 | sex | 6 | 40 |
+----------+------------+----------+------------+----------+------------+-------+
| region | 3 | age | 5 | sex | 7 | 60 |
+----------+------------+----------+------------+----------+------------+-------+
I need to turn each row in series, drop NANs and convert series in a dictionaries which will be variable in size, for example, first 2 dicts will look like this:
{'a_name_0':'country','id_qname_0':1}
{'a_name_0':'region','id_qname_0':2, 'a_name_1':'city','id_qname_1':8}
{'a_name_0':'region','id_qname_0':2, 'a_name_1':'city','id_qname_1':9}
Each dictionary after that should be stored in a list.
TASK 2.
Using table below I have to count appearance of columns from dict from previous step:
+----------+------------+----------+------------+----------+
| id | country | city | age | sex |
+----------+------------+----------+------------+----------+
| 1 | 1 | NAN | NAN | NAN |
+----------+------------+----------+------------+----------+
| 2 | 1 | 8 | NAN | NAN |
+----------+------------+----------+------------+----------+
If there is some faster mapping solution please advise since what I'm about to do is probably going to be quite messy. This answer doesn't help me since I need iterator for extracting parameters as well as counting their appearance.