This is my understanding. In OpenCV the function split() will take in the paced image input (being a multi-channel array) and split it into several separate single-channel arrays.
Within an image, each pixel has a spot sequentially within an array with each pixel having its own array to denote (r,g and b) hence the term multi channel. This set up allows any type of image such as bgr, rgb, or hsv to be split using the same function.
As Example (pretend these are separate examples so no variables are being overwritten)
b,g,r = cv2.split(bgrImage)
r,g,b = cv2.split(rgbImage)
h,s,v = cv2.split(hsvImage)
Take b,g,r
arrayts for example. Each is a single channel array contains a portion of the split rgb image.
This means the image is being split out into three separate arrays:
rgbImage[0] = [234,28,19]
r[0] = 234
g[0] = 28
b[0] = 19
rgbImage[41] = [119,240,45]
r[41] = 119
g[14] = 240
b[14] = 45
Merge does the reverse by taking several single channel arrays and merging them together:
newRGBImage = cv2.merge((r,g,b))
the order in which the separated channels are passed through become important with this function.
Pseudo code:
cv2.merge((r,g,b)) != cv2.merge((b,g,r))
As an aside: Cv2.split() is an expensive function and the use of numpy indexing is must more efficient.
For more information check out opencv python tutorials