I'm trying to get group "weighted" mean with multiple grouping variables and excluding own group value. This is related to my earlier post Get group mean with multiple grouping variables and excluding own group value, but when I applied it to my actual question (which is getting the weighted mean) I found out that it's much more complicated than getting the simple mean. Here's what I mean by that.
df <- data_frame(
state = rep(c("AL", "CA"), each = 6),
county = rep(letters[1:6], each = 2),
year = rep(c(2011:2012), 6),
value = c(91,46,37,80,33,97,4,19,85,90,56,94),
wt = c(1,4,3,5,1,4,5,1,5,5,4,1)
) %>% arrange(state, year)
For unweighted mean case, the following code (from the accepted answer of my earlier post) should work.
df %>%
group_by(state, year) %>%
mutate(q = (sum(value) - value) / (n()-1))
The desired variable new_val, which is the weighted mean, would be the following. For instance, the first two rows of new_val column are calculated as 37*3/4 + 33*1/4 = 36, 91*1/2 + 33*1/2 = 62.
# A tibble: 12 x 6
state county year value wt new_val
<chr> <chr> <int> <dbl> <dbl> <dbl>
1 AL a 2011 91 1 36
2 AL b 2011 37 3 62
3 AL c 2011 33 1 50.5
4 AL a 2012 46 4 87.6
5 AL b 2012 80 5 71.5
6 AL c 2012 97 4 64.9
7 CA d 2011 4 5 72.1
8 CA e 2011 85 5 27.1
9 CA f 2011 56 4 44.5
10 CA d 2012 19 1 90.7
11 CA e 2012 90 5 56.5
12 CA f 2012 94 1 78.2
I searched for similar posts with weighted mean in mind, but all the available ones were for the simple mean cases. Any comments would be greatly appreciated. Thank you!