I am using a deep neural network model (implemented in keras
)to make predictions. Something like this:
def make_model():
model = Sequential()
model.add(Conv2D(20,(5,5), activation = "relu"))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Flatten())
model.add(Dense(20, activation = "relu"))
model.add(Lambda(lambda x: tf.expand_dims(x, axis=1)))
model.add(SimpleRNN(50, activation="relu"))
model.add(Dense(1, activation="sigmoid"))
model.compile(loss = "binary_crossentropy", optimizer = adagrad, metrics = ["accuracy"])
return model
model = make_model()
model.fit(x_train, y_train, validation_data = (x_validation,y_validation), epochs = 25, batch_size = 25, verbose = 1)
##Prediciton:
prediction = model.predict_classes(x)
probabilities = model.predict_proba(x) #I assume these are the probabilities of class being predictied
My problem is a classification(binary) problem. I wish to calculate the confidence score of each of these prediction
i.e. I wish to know - Is my model 99% certain it is "0" or is it 58% it is "0".
I have found some views on how to do it, but can't implement them. The approach I wish to follow says: "With classifiers, when you output you can interpret values as the probability of belonging to each specific class. You can use their distribution as a rough measure of how confident you are that an observation belongs to that class."
How should I predict with something like above model so that I get its confidence about each predictions? I would appreciate some practical examples (preferably in Keras).