I think you need Series.dropna
:
df = df.apply(lambda x: pd.Series(x.dropna().to_numpy()))
print (df)
X1 X2 X3
0 a b a
1 b c NaN
2 c NaN NaN
For improve performance is possible use a bit changed justify function by Divakar:
def justify(a, invalid_val=0, axis=1, side='left'):
"""
Justifies a 2D array
Parameters
----------
A : ndarray
Input array to be justified
axis : int
Axis along which justification is to be made
side : str
Direction of justification. It could be 'left', 'right', 'up', 'down'
It should be 'left' or 'right' for axis=1 and 'up' or 'down' for axis=0.
"""
if invalid_val is np.nan:
#change to notnull
mask = pd.notnull(a)
else:
mask = a!=invalid_val
justified_mask = np.sort(mask,axis=axis)
if (side=='up') | (side=='left'):
justified_mask = np.flip(justified_mask,axis=axis)
#change dtype to object
out = np.full(a.shape, invalid_val, dtype=object)
if axis==1:
out[justified_mask] = a[mask]
else:
out.T[justified_mask.T] = a.T[mask.T]
return out
df = pd.DataFrame(justify(df.values, invalid_val=np.nan, side='up', axis=0),
columns=df.columns).dropna(how='all')
print (df)
X1 X2 X3
0 a b a
1 b c NaN
2 c NaN NaN