I have a dataframe that looks like this:
emp job phase cat hours equipnum equipcode equiphours equipdate
0 OO003 19713 95L 9512 1 None None 0.0 2020-01-24
1 OO003 19713 95L 9512 1 None None 0.0 2020-01-24
2 OO003 19713 95L 9512 1 None None 0.0 2020-01-24
3 OO003 19713 95L 9512 1 None None 0.0 2020-01-24
4 OO003 19526 OH MAT 1 AIR012 E-REV 1.0 2020-01-24
5 OO003 19526 OH MAT 1 AIR012 E-REV 1.0 2020-01-24
6 OO003 19526 OH MAT 1 AIR012 E-REV 1.0 2020-01-24
7 OO003 19486 52L 5212 1 None None 0.0 2020-01-24
8 OO003 19486 52L 5212 1 None None 0.0 2020-01-24
9 OO003 19486 52L 5212 1 None None 0.0 2020-01-24
10 UR003 19713 95L 9512 1 None None 0.0 2020-01-24
11 UR003 19713 95L 9512 1 None None 0.0 2020-01-24
12 UR003 19713 95L 9512 1 None None 0.0 2020-01-24
13 UR003 19526 OH MAT 1 None None 0.0 2020-01-24
14 UR003 19526 OH MAT 1 None None 0.0 2020-01-24
15 UR003 19526 OH MAT 1 None None 0.0 2020-01-24
16 UR003 19526 OH MAT 1 None None 0.0 2020-01-24
17 UR003 19526 OH MAT 1 None None 0.0 2020-01-24
18 UR003 19526 OH MAT 1 None None 0.0 2020-01-24
19 UR003 19526 OH MAT 1 None None 0.0 2020-01-24
Would there be a way to groupby sum only the hours column for the first 8 rows and then the following 2 rows for each unique employee number (emp)?
The final dataframe should look like this:
emp job phase cat hours equipnum equipcode equiphours equipdate
0 OO003 19713 95L 9512 4 None None 0.0 2020-01-24
1 OO003 19526 OH MAT 3 AIR012 E-REV 1.0 2020-01-24
2 OO003 19486 52L 5212 1 None None 0.0 2020-01-24
3 OO003 19486 52L 5212 2 None None 0.0 2020-01-24
4 UR003 19713 95L 9512 3 None None 0.0 2020-01-24
5 UR003 19526 OH MAT 5 None None 0.0 2020-01-24
6 UR003 19526 OH MAT 2 None None 0.0 2020-01-24
Thank you for the help!