There are functions that can group data into hourly i.e. 24 or into day of year i.e. 365. I have a dataset of 3 years 1999-2001 that has hourly values. So total values are 24*365*4+1*24=26304(1*24= leap year day). When I run the function
result=ds.groupby('time.dayofyear').mean('time')
The result it gives:
<xarray.DataArray 'precip' (dayofyear: 366, lat: 21, lon: 33)>
array([[[0. , 0. , 0. , ..., 0. ,
0. , 0. ],
[0. , 0. , 0. , ..., 0. ,
0. , 0. ],
[0. , 0. , 0. , ..., 0. ,
0. , 0. ],
...,
[0.00086806, 0.00065104, 0.00097656, ..., 0. ,
0. , 0. ],
[0.00141059, 0.00141059, 0.00130208, ..., 0. ,
0. , 0. ],
[0.00195312, 0.00141059, 0.00119358, ..., 0. ,
0. , 0. ]],
[[0. , 0. , 0. , ..., 0. ,
0. , 0. ],
[0. , 0. , 0. , ..., 0. ,
0. , 0. ],
[0. , 0. , 0. , ..., 0. ,
0. , 0. ],
...,]
Coordinates:
* lon (lon) float32 220.0 222.5 225.0 227.5 ... 292.5 295.0 297.5 300.0
* lat (lat) float32 20.0 22.0 24.0 26.0 28.0 ... 54.0 56.0 58.0 60.0
* dayofyear (dayofyear) int64 1 2 3 4 5 6 7 8 ... 360 361 362 363 364 365 366
If I use the time.hour groupby function:
result=ds.groupby('time.hour').mean('time')
<xarray.DataArray 'precip' (hour: 24, lat: 21, lon: 33)>
array([[[0. , 0. , 0. , ..., 0. ,
0. , 0. ],
[0. , 0. , 0. , ..., 0. ,
0. , 0. ],
[0. , 0. , 0. , ..., 0. ,
0. , 0. ],
...,
[0.00015682, 0.00022097, 0.00047759, ..., 0. ,
0. , 0. ],
[0.00033503, 0.00037779, 0.0004562 , ..., 0. ,
0. , 0. ],
[0.00044195, 0.00039918, 0.00039205, ..., 0. ,
0. , 0. ]],, dtype=float32)
Coordinates:
* lon (lon) float32 220.0 222.5 225.0 227.5 ... 292.5 295.0 297.5 300.0
* lat (lat) float32 20.0 22.0 24.0 26.0 28.0 ... 52.0 54.0 56.0 58.0 60.0
* hour (hour) int64 0 1 2 3 4 5 6 7 8 9 ... 14 15 16 17 18 19 20 21 22 23
How to groupy hour of the year where it gives me hourly average of the year rather than a day. Need the function to give result as 366*24 =8784 where average is calculated using day hour index.