I have a pivot table created using Pandas looks like below:
How can I achieve this?
You can create DataFrame of styles with Styler.apply
and set rows by index value with loc
:
df = df.reset_index()
def color(x):
c1 = 'background-color: yellow'
c2 = 'background-color: orange'
c3 = 'background-color: green'
c4 = 'background-color: blue'
c = ''
#compare columns
mask1 = x['Row Lbl'] == 'cashback'
mask2 = x['Row Lbl'].isin(['GrandTot', 'with cashbak'])
both = mask1 | mask2
#DataFrame with same index and columns names as original filled empty strings
df1 = pd.DataFrame(c, index=x.index, columns=x.columns)
#modify values of df1 column by boolean mask
df1.loc[~both, 'price'] = c1
df1.loc[~both, 'GrandTot'] = c2
df1.loc[mask1, :] = c3
df1.loc[mask2, :] = c4
return df1
df.style.apply(color, axis=None).to_excel('styled.xlsx', engine='openpyxl', index=False)
If you want to style based on numpy.Array
mask to your pandas.DataFrame
object, you can use:
import pandas as pd
import numpy as np
# Set the random seed for reproducibility (optional)
np.random.seed(42)
# Create a 3x5 random mask
mask = np.random.choice([True, False], size=(3, 5))
mask = pd.DataFrame(mask)
# Create a 3x5 DataFrame with random values from 1 to 5
data = np.random.randint(1, 6, size=(3, 5))
df = pd.DataFrame(data)
print(df)
print(mask)
def apply_background_color(val, color):
return f'background-color: {color}' if val else None
# Apply the background color based on the mask
def apply_background_color(val, color):
return f'background-color: {color}' if val else None
# Apply the background color based on the mask
df_styled = df.style.apply(lambda x: mask.applymap(apply_background_color, color='yellow'), axis=None)
df_styled