Why page tables are aligned on their size
For a given level on the process of translating the virtual address, requiring the current page table to be aligned on its size in bytes speeds up the indexing operation.
The CPU doesn't need to perform an actual addition to find the base of the next level page table, it can scale the index and then replace the lowest bits in the current level base.
You can convince yourself this is indeed the case with a few examples.
It's not a coincidence x86s follow this alignment too.
For example, regarding the 4-level paging for 4KiB pages of the x86 CPUs, the Page Directory Pointer field of a 64-bit address is 9 bits wide.
Each entry in that table (a PDPTE) is 64 bits, so the page size is 4096KiB and the last entry has offset 511 * 8 = 4088 (0xff8 in hex, so only 12 bits used at most).
The address of a Page Directory Pointer table is given by a PML4 entry, these entries have don't specify the lower 12 bits of the base (which are used for other purposes), only the upper bits.
The CPU can then simply replace the lower 12 bits in the PML4 entry with the offset of the PDPTE since we have seen it has size 12 bits.
This is fast and cheap to do in hardware (no carry, easy to do with registers).
Assume that a country has ZIP codes made of two fields: a city code (C) and a block code (D), added together.
Also, assume that there can be at most 100 block codes for a given city, so D is 2 digits long.
Requiring that the city code is aligned on 100 (which means that the last two digits of C are zero) makes C + D like replacing the last two digits of C with D.
(1200 + 34 = 12|34).
Relation with the alignment of aggregates
A page table is not regarded as an aggregate, i.e. as an array of 8 byte elements. It is regarded as a type of its own, defined by the ISA of the CPU and that must satisfy the requirement of the particular part of the CPU that uses it.
The page walker finds convenient to have a page table aligned on their size, so this is the requirement.
The alignment of aggregates is a set of rules used by the compiler to allocate objects in memory, it guarantees that every element alignment is satisfied so that instructions can access any element without alignment penalties/fault.
The execution units for loads and stores are a different part of the CPU than the page walker, so different needs.
You should use the aggregates alignment to know how the compiler will align your structs and then check if that's enough for your use case.
Exceptions exist
Note that the professor went a long way with explaining what alignment on their natural boundary means for page tables.
Exceptions exist, if you are told that a datum must be aligned on X, you can assume there's some hardware trick/simplification involved and try to see which one but in the end you just do the alignment and move on.