The problem appears to be that weighted.sd()
will not operate as you are expecting across rows of a data frame.
Running weighted.sd
we can see the code:
weighted.sd <- function (x, wt, na.rm = TRUE)
{
if (na.rm) {
x <- na.omit(x)
wt <- na.omit(wt)
}
wt <- wt/sum(wt)
wm <- weighted.mean(x, wt)
sqrt(sum(wt * (x - wm)^2))
}
In your example, you are not feeding in a vector for x
, but rather a single row of a data frame. Function na.omit(x)
will remove that entire row, due to the NA
values - not elements of the vector.
You can try to convert the row to a vector with as.numeric()
, but that will fail for this function as well due to how NA
is removed from wt
.
It seems like something like this is probably what you want. Of course, you have to be careful that you are feeding in valid columns for x
.
weighted.sd2 <- function (x, wt, na.rm = TRUE) {
x <- as.numeric(x)
if (na.rm) {
is_na <- is.na(x)
x <- x[!is_na]
wt <- wt[!is_na]
}
wt <- wt/sum(wt)
wm <- weighted.mean(x, wt)
sqrt(sum(wt * (x - wm)^2))
}
weighted.sd2(mtcars[18,1:11], c(11,11,11,11,11,11,11,11,11,11,11), na.rm = TRUE)#works
# [1] 26.76086
weighted.sd2(mtcars[5,1:11], c(11,11,11,11,11,11,11,11,11,11,11), na.rm = TRUE)#issue here
# [1] 116.545
To apply this to all columns, you can use apply()
.
mtcars$weighted.sd <- apply(mtcars[,1:11], 1, weighted.sd2, wt = rep(11, 11))
mpg cyl disp hp drat wt qsec vs am gear carb weighted.sd
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 NA 1 4 4 52.61200
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 NA 1 4 4 52.58011
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 37.06108
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 NA 3 1 78.36300
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 NA NA 3 2 116.54503
...