Well you're certainly right that it's hard to find an example
A common webgl shader projects in 3D using code like either
gl_Position = matrix * position;
or
gl_Position = projection * modelView * position;
or
gl_Position = projection * view * world * position;
which are all the same thing basically. They take position
and multiply it by a matrix to convert to clip space. You need to do the opposite to go the other way, take a position in clip space and covert back to position
space which is
inverse (projection * view * world) * clipSpacePosition
So, take your 3D library and compute the inverse of the matrix you're passing to WebGL. For exmaple here is some code that is computing matrices to draw something using twgl's math library
const fov = 30 * Math.PI / 180;
const aspect = gl.canvas.clientWidth / gl.canvas.clientHeight;
const zNear = 0.5;
const zFar = 10;
const projection = m4.perspective(fov, aspect, zNear, zFar);
const eye = [1, 4, -6];
const target = [0, 0, 0];
const up = [0, 1, 0];
const camera = m4.lookAt(eye, target, up);
const view = m4.inverse(camera);
const viewProjection = m4.multiply(projection, view);
const world = m4.rotationY(time);
For a shader that is effectively doing this
gl_Position = viewProjection * world * position
So we need the inverse
const invMat = m4.inverse(m4.multiply(viewProjection, world));
Then we need a clip space ray. We're going from 2D to 3D so we'll make a ray that cuts through the frustum starting at zNear and ending at zFar by using -1 and +1 as our Z value
canvas.addEventListener('mousemove', (e) => {
const rect = canvas.getBoundingClientRect();
const x = e.clientX - rect.left;
const y = e.clientY - rect.top;
const clipX = x / rect.width * 2 - 1;
const clipY = y / rect.height * -2 + 1;
const start = m4.transformPoint(invMat, [clipX, clipY, -1]);
const end = m4.transformPoint(invMat, [clipX, clipY, 1]);
... do something with start/end
});
start
and end
are now relative to position
(the data in your geometry) so you now have to use some ray to triangle code in JavaScript to walk through all your triangles and see if the ray from start to end intersecs one or more of your triangles.
Note if all you want is a ray in world space, not position space then you'd use
const invMat = m4.inverse(viewProjection);
"use strict";
const vs = `
uniform mat4 u_world;
uniform mat4 u_viewProjection;
attribute vec4 position;
attribute vec2 texcoord;
attribute vec4 color;
varying vec4 v_position;
varying vec2 v_texcoord;
varying vec4 v_color;
void main() {
v_texcoord = texcoord;
v_color = color;
gl_Position = u_viewProjection * u_world * position;
}
`;
const fs = `
precision mediump float;
varying vec2 v_texcoord;
varying vec4 v_color;
uniform sampler2D tex;
void main() {
gl_FragColor = texture2D(tex, v_texcoord) * v_color;
}
`;
const m4 = twgl.m4;
const gl = document.querySelector("#c").getContext("webgl");
// compiles shaders, links, looks up locations
const programInfo = twgl.createProgramInfo(gl, [vs, fs]);
const cubeArrays = twgl.primitives.createCubeVertices(1);
cubeArrays.color = {value: [0.2, 0.3, 1, 1]};
// calls gl.createBuffer, gl.bindBuffer, gl.bufferData
// for each array
const cubeBufferInfo = twgl.createBufferInfoFromArrays(gl, cubeArrays);
const numLines = 50;
const positions = new Float32Array(numLines * 3 * 2);
const colors = new Float32Array(numLines * 4 * 2);
// calls gl.createBuffer, gl.bindBuffer, gl.bufferData
// for each array
const linesBufferInfo = twgl.createBufferInfoFromArrays(gl, {
position: positions,
color: colors,
texcoord: { value: [0, 0], },
});
const tex = twgl.createTexture(gl, {
minMag: gl.NEAREST,
format: gl.LUMINANCE,
src: [
255, 192,
192, 255,
],
});
let clipX = 0;
let clipY = 0;
let lineNdx = 0;
function render(time) {
time *= 0.001;
twgl.resizeCanvasToDisplaySize(gl.canvas);
gl.viewport(0, 0, gl.canvas.width, gl.canvas.height);
gl.enable(gl.DEPTH_TEST);
gl.enable(gl.CULL_FACE);
gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
const fov = 30 * Math.PI / 180;
const aspect = gl.canvas.clientWidth / gl.canvas.clientHeight;
const zNear = 1;
const zFar = 10;
const projection = m4.perspective(fov, aspect, zNear, zFar);
const eye = [Math.cos(time), Math.sin(time), 6];
const target = [0, 0, 0];
const up = [0, 1, 0];
const camera = m4.lookAt(eye, target, up);
const view = m4.inverse(camera);
const viewProjection = m4.multiply(projection, view);
const world = m4.rotateX(m4.rotationY(1), 1);
gl.useProgram(programInfo.program);
// calls gl.bindBuffer, gl.enableVertexAttribArray, gl.vertexAttribPointer
twgl.setBuffersAndAttributes(gl, programInfo, cubeBufferInfo);
twgl.setUniformsAndBindTextures(programInfo, {
tex,
u_world: world,
u_viewProjection: viewProjection,
color: [0.2, 0.3, 1, 1],
});
// calls gl.drawArrays or gl.drawElements
twgl.drawBufferInfo(gl, cubeBufferInfo);
// add a line in world space
const invMat = m4.inverse(viewProjection);
const start = m4.transformPoint(invMat, [clipX, clipY, -1]);
const end = m4.transformPoint(invMat, [clipX, clipY, 1]);
const poffset = lineNdx * 3 * 2;
const coffset = lineNdx * 4 * 2;
const color = [Math.random(), Math.random(), Math.random(), 1];
positions.set(start, poffset);
positions.set(end, poffset + 3);
colors.set(color, coffset);
colors.set(color, coffset + 4);
gl.bindBuffer(gl.ARRAY_BUFFER, linesBufferInfo.attribs.position.buffer);
gl.bufferSubData(gl.ARRAY_BUFFER, 0, positions);
gl.bindBuffer(gl.ARRAY_BUFFER, linesBufferInfo.attribs.color.buffer);
gl.bufferSubData(gl.ARRAY_BUFFER, 0, colors);
lineNdx = (lineNdx + 1) % numLines;
// calls gl.bindBuffer, gl.enableVertexAttribArray, gl.vertexAttribPointer
twgl.setBuffersAndAttributes(gl, programInfo, linesBufferInfo);
twgl.setUniformsAndBindTextures(programInfo, {
tex,
u_world: m4.identity(),
u_viewProjection: viewProjection,
color: [1, 0, 0, 1],
});
// calls gl.drawArrays or gl.drawElements
twgl.drawBufferInfo(gl, linesBufferInfo, gl.LINES);
requestAnimationFrame(render);
}
requestAnimationFrame(render);
gl.canvas.addEventListener('mousemove', (e) => {
const canvas = gl.canvas;
const rect = canvas.getBoundingClientRect();
const x = e.clientX - rect.left;
const y = e.clientY - rect.top;
clipX = x / rect.width * 2 - 1;
clipY = y / rect.height * -2 + 1;
});
body { margin: 0; }
canvas { width: 100vw; height: 100vh; display: block; }
<canvas id="c"></canvas>
<script src="https://twgljs.org/dist/4.x/twgl-full.min.js"></script>
As for WebGL info there is some here