I have an array of row vectors, upon which I run random.shuffle
:
#!/usr/bin/env python
import random
import numpy as np
zzz = np.array([[0.1, 0.2, 0.3, 0.4, 0.5],
[0.6, 0.7, 0.8, 0.9, 1. ]])
iterations = 100000
f = 0
for _ in range(iterations):
random.shuffle(zzz)
if np.array_equal(zzz[0], zzz[1]):
print(zzz)
f += 1
print(float(f)/float(iterations))
Between 99.6 and 100% of the time, using random.shuffle
on zzz
returns a list with the same elements in it, e.g.:
$ ./test.py
...
[[ 0.1 0.2 0.3 0.4 0.5]
[ 0.1 0.2 0.3 0.4 0.5]]
0.996
Using numpy.random.shuffle
appears to pass this test and shuffle row vectors correctly. I'm curious to know why random.shuffle
fails.