I want to create several subsets of the MNIST dataset provided in Pytorch. Each subset should have different classes. What I tried was the following:
def split_MNIST(mnist_set, digits):
dset = mnist_set
classes = []
indices = dset.targets == digits[0]
classes.append(dset.classes[digits[0]])
if len(digits) > 1:
for digit in digits[1:]:
idx = dset.targets == digit
indices = indices + idx
classes.append(dset.classes[digit])
dset.targets = dset.targets[indices]
dset.data = dset.data[indices]
dset.classes = classes
return dset
train = datasets.MNIST("../data", train=True, download=True,
transform=transforms.Compose([transforms.ToTensor()]))
test =datasets.MNIST("../data", train=False, download=True,
transform=transforms.Compose([transforms.ToTensor()]))
tr = split_MNIST(train, [1,2,3])
trainset = torch.utils.data.DataLoader(tr, batch_size=16, shuffle=True)
This works, but instead of creating a new dataset, it actually changes the original train variable. Is there a way to create a clone of the dataset instead to preserve the original one?