I have a dataframe:
df = pd.DataFrame({0: [1, 2, 5, 13], 1: [1, 4, 3, 1], 2: [1, 2, 5, 10], 3: [4, 4, 5, 3], 4: [0, 6, 1, 1], 5: [5, 6, 4, 5], 6: [0, 9, 9, 0], 7: [1, 1, 1, 1]})
df
0 1 2 3 4 5 6 7
1 1 1 4 0 5 0 1
2 4 2 4 6 6 9 1
5 3 5 5 1 4 9 1
13 1 10 3 1 5 0 1
I want to take the average values of each 2 side-by-side elements but sliced every 4 columns (average1 = columns 0, 1, 2, 3, average2 = columns 1, 2, 3, 4, average3 = columns 2, 3, 4, 5 ....etc).
For example pseudo code would be:
for index in range(len(df.columns)):
df_1 = df.iloc[:index, index:index+1]
df_2 = df.iloc[:index, index+2:index+3]
df_avg = pd.concat([df_1, df_2]).mean(axis=1)
The output I desire is:
df_avg
(1+1+1+4)/4 (1+1+4+0)/4 . . . . (0+5+0+1)/4
(4+2+4+6)/4 (4+2+4+6)/4 . . . . (6+6+9+1)/4
.
.
.
(13+1+10+3)/4 (1+10+3+1)/4 . . . . (1+5+0+1)/4
df_avg
1.75 1.50 . . . . 1.50
4.00 4.00 . . . . 5.50
6.75 3.75 . . . . 1.75
Is there an easy way to do this with groupby().mean() or possibly .rolling().mean() methods?