Is there a way to compute arbitrary number of different groupby levels in one go with some pre-built Pandas function? Below is a simple example with two columns.
import pandas as pd
df1 = pd.DataFrame( {
"name" : ["Alice", "Bob", "Mallory", "Mallory", "Bob" , "Mallory"],
"city" : ["Seattle", "Seattle", "Portland", "Seattle", "Seattle", "Portland"],
"dollars":[1, 1, 1, 1, 1, 1] })
group1 = df1.groupby("city").dollars.sum().reset_index()
group1['name']='All'
group2 = df1.groupby("name").dollars.sum().reset_index()
group2['city']='All'
group3 = df1.groupby(["name", "city"]).dollars.sum().reset_index()
total = df1.dollars.sum()
total_df=pd.DataFrame({
"name" : ["All"],
"city" : ["All"],
"dollars": [total] })
all_groups = group3.append([group1, group2, total_df], sort=False)
name city dollars
0 Alice Seattle 1
1 Bob Seattle 2
2 Mallory Portland 2
3 Mallory Seattle 1
0 All Portland 2
1 All Seattle 4
0 Alice All 1
1 Bob All 2
2 Mallory All 3
0 All All 6
So I took Ben. T example and rebuilt it from sum() to agg(). The next step for me is to build an option to pass a specific list of groupby combinations, in case not all of them are needed.
from itertools import combinations
import pandas as pd
df1 = pd.DataFrame( {
"name" : ["Alice", "Bob", "Mallory", "Mallory", "Bob" , "Mallory"],
"city" : ["Seattle", "Seattle", "Portland", "Seattle", "Seattle", "Portland"],
"dollars":[1, 2, 6, 5, 3, 4],
"qty":[2, 3, 4, 1, 5, 6] ,
"id":[1, 1, 2, 2, 3, 3]
})
col_gr = ['name', 'city']
agg_func={'dollars': ['sum', 'max', 'count'], 'qty': ['sum'], "id":['nunique']}
def multi_groupby(in_df, col_gr, agg_func, all_value="ALL"):
tmp1 = pd.DataFrame({**{col: all_value for col in col_gr}}, index=[0])
tmp2 = in_df.agg(agg_func)\
.unstack()\
.to_frame()\
.transpose()\
.dropna(axis=1)
tmp2.columns = ['_'.join(col).strip() for col in tmp2.columns.values]
total = tmp1.join(tmp2)
for r in range(len(col_gr), 0, -1):
for cols in combinations(col_gr, r):
tmp_grp = in_df.groupby(by=list(cols))\
.agg(agg_func)\
.reset_index()\
.assign(**{col: all_value for col in col_gr if col not in cols})
tmp_grp.columns = ['_'.join(col).rstrip('_') for col in tmp_grp.columns.values]
total = pd.concat([total]+[tmp_grp], axis=0, ignore_index=True)
return total
multi_groupby(df1, col_gr, agg_func)